面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-re...面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)地表反射率产品作为辅助数据源,开发了适于业务运行的WFV数据气溶胶光学厚度(aerosol optical depth,AOD)及PAR的反演算法。算法核心是采用6S(second simulation of satellite signal in the solar spectrum)大气辐射传输模型,建立包括AOD在内的大气参数与查找表(look-up table,LUT),结合大气顶层太阳入射辐照度及卫星入瞳处辐射亮度值反演地表反射率数据,通过与WFV蓝光波段地表反射率数据对比获取大气参数。通过反演的大气参数计算400~700 nm连续光谱区间的PAR值,并建立WFV数据离散红、绿、蓝光波段与连续光谱区间PAR的转换系数,实现WFV数据PAR的反演。其中,WFV蓝光波段反射率数据与MODIS地表反射率数据关系、离散到连续谱段PAR的关系可以从美国地质勘探局(United States Geological Survey,USGS)提供的典型地物波谱库数据理论计算获取。利用中国生态系统研究网络(chinese ecosystem research network,CERN)禹城站地面观测值进行验证结果表明,该文提出的算法总体精度达到92.63%,平均绝对误差为14.56 W/m^2,平均相对误差7.37%,具有业务应用的潜力。展开更多
基金National Science and Technology Program topics(2014BAD04B05)National Science and Technology Support Program(2012BAD28B02)Beijing Innovation Team Project(BAIC02-2016)
文摘面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)地表反射率产品作为辅助数据源,开发了适于业务运行的WFV数据气溶胶光学厚度(aerosol optical depth,AOD)及PAR的反演算法。算法核心是采用6S(second simulation of satellite signal in the solar spectrum)大气辐射传输模型,建立包括AOD在内的大气参数与查找表(look-up table,LUT),结合大气顶层太阳入射辐照度及卫星入瞳处辐射亮度值反演地表反射率数据,通过与WFV蓝光波段地表反射率数据对比获取大气参数。通过反演的大气参数计算400~700 nm连续光谱区间的PAR值,并建立WFV数据离散红、绿、蓝光波段与连续光谱区间PAR的转换系数,实现WFV数据PAR的反演。其中,WFV蓝光波段反射率数据与MODIS地表反射率数据关系、离散到连续谱段PAR的关系可以从美国地质勘探局(United States Geological Survey,USGS)提供的典型地物波谱库数据理论计算获取。利用中国生态系统研究网络(chinese ecosystem research network,CERN)禹城站地面观测值进行验证结果表明,该文提出的算法总体精度达到92.63%,平均绝对误差为14.56 W/m^2,平均相对误差7.37%,具有业务应用的潜力。