n/γ射线双粒子反应深度(Depth of Interaction,DOI)探测器可以实现中子与γ射线甄别并记录粒子在探测器中的反应位置,在对特殊核材料等危险放射性物质的定位成像研究中发挥着重要作用。传统的放射性定位成像装置都依赖具有n/γ射线甄...n/γ射线双粒子反应深度(Depth of Interaction,DOI)探测器可以实现中子与γ射线甄别并记录粒子在探测器中的反应位置,在对特殊核材料等危险放射性物质的定位成像研究中发挥着重要作用。传统的放射性定位成像装置都依赖具有n/γ射线甄别能力的探测器阵列,从而导致成像测量装置结构复杂、成本高。针对此问题,设计了一种基于EJ276塑料闪烁体(Φ3 cm×15 cm)的双粒子反应深度探测器,采用硅光电倍增管在闪烁体两端进行信号读出,并综合利用两端信号幅度与飞行时间对比进行粒子反应位置确定。利用Am-Be中子源和137Cs γ源对探测器进行参数优化和分辨率刻度,结果显示:该探测器在灵敏区内探测效率均匀性较好,反应位置分辨率约4.4 cm。展开更多
异构VDES(VHF data exchange system)星座采用相同的通信频率和时分多址通信机制,使得异构星座重复覆盖区域内存在大量由时隙冲突造成的同频干扰,严重影响通信质量。针对此问题,提出一种基于深度Q网络(DQN)的星座间兼容策略。基于VDES...异构VDES(VHF data exchange system)星座采用相同的通信频率和时分多址通信机制,使得异构星座重复覆盖区域内存在大量由时隙冲突造成的同频干扰,严重影响通信质量。针对此问题,提出一种基于深度Q网络(DQN)的星座间兼容策略。基于VDES通信流程,设置船站作为资源信息中转节点,赋予卫星对通信环境的感知能力。在此基础上,将异构星座场景下的资源分配问题建模为强化学习问题,提出一种基于DQN的时隙资源分配算法。通过重构历史资源信息和当前资源信息,规划最优时隙资源分配方案,并根据结果对算法迭代优化。仿真结果表明,所提出的策略可以有效提高通信性能。展开更多
文摘异构VDES(VHF data exchange system)星座采用相同的通信频率和时分多址通信机制,使得异构星座重复覆盖区域内存在大量由时隙冲突造成的同频干扰,严重影响通信质量。针对此问题,提出一种基于深度Q网络(DQN)的星座间兼容策略。基于VDES通信流程,设置船站作为资源信息中转节点,赋予卫星对通信环境的感知能力。在此基础上,将异构星座场景下的资源分配问题建模为强化学习问题,提出一种基于DQN的时隙资源分配算法。通过重构历史资源信息和当前资源信息,规划最优时隙资源分配方案,并根据结果对算法迭代优化。仿真结果表明,所提出的策略可以有效提高通信性能。