A troubling feedback loop, where drier soil contributes to hotter climates, has been widely recognized.This study, drawing on climate model simulations, reveals that maintaining current global soil moisture levels cou...A troubling feedback loop, where drier soil contributes to hotter climates, has been widely recognized.This study, drawing on climate model simulations, reveals that maintaining current global soil moisture levels could significantly alleviate 32.9% of land warming under low-emission scenarios. This action could also postpone reaching critical warming thresholds of 1.5 °C and 2.0 °C by at least a decade. Crucially,preserving soil moisture at current levels could prevent noticeable climate change impacts across 42%of the Earth's land, a stark deviation from projections suggesting widespread impacts before the 2060s.To combat soil drying, afforestation in mid-to-low latitude regions within the next three decades is proposed as an effective strategy to increase surface water availability. This underscores the substantial potential of nature-based solutions for managing soil moisture, benefiting both climate change mitigation and ecological enhancement.展开更多
基金supported by the Beijing Nova Program(Z201100006820069)National Key R&D Program of China(2016YFC0901400,2016YFC0901404,and 2018YFC1311706)CAMS Innovation Fund for Medical Sciences(CIFMS)(2018-I2M3-003 and 2021-I2M-1-011)。
基金supported by the National Natural Science Foundation of China (42288101, 42175053)the National Key Research and Development Program of China (2022YFF0801703)supported by Swedish BECC and MERGE,the Swedish Research Council VR (2021-02163, 2022-06011)。
文摘A troubling feedback loop, where drier soil contributes to hotter climates, has been widely recognized.This study, drawing on climate model simulations, reveals that maintaining current global soil moisture levels could significantly alleviate 32.9% of land warming under low-emission scenarios. This action could also postpone reaching critical warming thresholds of 1.5 °C and 2.0 °C by at least a decade. Crucially,preserving soil moisture at current levels could prevent noticeable climate change impacts across 42%of the Earth's land, a stark deviation from projections suggesting widespread impacts before the 2060s.To combat soil drying, afforestation in mid-to-low latitude regions within the next three decades is proposed as an effective strategy to increase surface water availability. This underscores the substantial potential of nature-based solutions for managing soil moisture, benefiting both climate change mitigation and ecological enhancement.