期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring
1
作者 胡春雨 忽丽莎 +3 位作者 袁林 陆佃杰 吕蕾 陈益强 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第5期970-984,共15页
Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption.However,most wearable health data is distributed across d... Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption.However,most wearable health data is distributed across dfferent organizations,such as hospitals,research institutes,and companies,and can only be accessed by the owners of the data in compliance with data privacy regulations.The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations.The second technical challenge is handling the dynamic expansion of the federation without model retraining.To address the first challenge,we propose a horizontal federated learning method called Federated Extremely Random Forest(FedERF).Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance.Based on FedERF,we present a federated incremental learning method called Federated Incremental Extremely Random Forest(FedIERF)to address the second technical challenge.FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally.The experiments show that FedERF achieves comparable performance with non-federated methods,and FedIERF effectively addresses the dynamic expansion of the federation.This opens up opportunities for cooperation between different organizations in wearable health monitoring. 展开更多
关键词 federated learning incremental learning random forest wearable health monitoring
原文传递
桃树主干形和开心形冠层结构特征与果实质地关系的研究 被引量:6
2
作者 李永红 王召元 +5 位作者 常瑞丰 张立莎 陈湖 徐金涛 韩继成 刘国俭 《江西农业学报》 CAS 2017年第3期66-69,79,共5页
以大久保主干形和开心形2种树形为研究对象,应用CI-110冠层分析仪分析了2种树形的冠层结构特点和果实质地之间的差异及其相关性,结果表明:主干形的光斑值、光合有效辐射和林隙分数显著低于开心形,而叶面积指数和平均叶倾角显著高于开心... 以大久保主干形和开心形2种树形为研究对象,应用CI-110冠层分析仪分析了2种树形的冠层结构特点和果实质地之间的差异及其相关性,结果表明:主干形的光斑值、光合有效辐射和林隙分数显著低于开心形,而叶面积指数和平均叶倾角显著高于开心形;开心形内聚性、胶着性和咀嚼性分别比主干形高24.00%、28.68%和27.31%,均达到极显著水平;而粘性则低64.1%。开心形树冠不同部位果实质地一致性优于主干形。冠层特征参数与果实质地参数间存在显著相关性,其中叶面积指数与内聚性、弹性、胶着性和咀嚼性之间呈极显著的负相关,与粘性呈极显著正相关;平均叶倾角与弹性和咀嚼性呈极显著负相关;林隙分数与粘性呈极显著负相关,与内聚性、弹性、胶着性和咀嚼性之间呈极显著的正相关。由此可知,叶面积指数、平均叶倾角和林隙分数可初步作为冠层分析的主要指标,冠层分析仪的应用可能成为果树树形评价的新方法和提供理论依据。 展开更多
关键词 桃树 主干形 开心形 果实质地
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部