Mild cognitive impairment (MCI) is regarded as a transitional stage during the development of Alzheimer’s disease. Diagnosis of MCI can be obtained by the questionnaire “DemTect” in German speaking countries. Quant...Mild cognitive impairment (MCI) is regarded as a transitional stage during the development of Alzheimer’s disease. Diagnosis of MCI can be obtained by the questionnaire “DemTect” in German speaking countries. Quantitative assessment has been successfully performed using psychometric testing concomitantly with quantitative EEG recording. The present investigation aimed at the possible treatment of MCI with two botanicals, namely extracts from Sideritis scardica (500 mg) or Bacopa monnieri (320 mg) and three combinations thereof using this method in order to find a new treatment. The performance of the d2-test, an arithmetic calculation test (CPT) and a memory-test revealed better performance for the d2-test only in the presence of Sideritis extract or the combinations with Bacopa extract. Quantitative EEG assessment during the different experimental conditions showed massive differences between both extracts. Whereas Sideritis extract and its combination with a low amount of Bacopa extract (160 mg) induced increases of spectral power in fronto-temporal brain areas, Bacopa and the combination of Sideritis with high amounts of Bacopa extract produced attenuation of all waves except for delta in fronto-temporal brain areas. These differences were also documented by quantitative EEG maps in comparison to Placebo. A different action of both extracts was confirmed by discriminant analysis, where Sideritis extract and its combination with low Bacopa grouped together quite at distance to Bacopa and the combination of Sideritis with high Bacopa. A combination of Sideritis extract with a low amount of Bacopa should be tested with daily repetitive dosing for at least 4 weeks as a consequence.展开更多
To find possible therapeutic applications involving the Central Nervous System (CNS) for herbals is a major challenge during functional food and drug discovery and development programmes. Despite the availability of n...To find possible therapeutic applications involving the Central Nervous System (CNS) for herbals is a major challenge during functional food and drug discovery and development programmes. Despite the availability of numerous in vitro and in vivo tests, there is no single agreed screening procedure for pharmacological testing of herbal extracts with anticipated CNS activity. Experience gained from more than 25 years of testing has shown that two models give reasonably reliable orientation for future CNS applications: construction of an electropharmacogram based on wireless recording of field potentials from the depth of the brain of freely moving rats (Tele-Stereo-EEG) and recording of the population spike produced by pyramidal cells from hippocampal slices in vitro. A combination of these two methods has now been used to characterize the pharmacological profile of extracts from Rhodiola rosea root, Oenothera paradoxa seeds and Paullinia cupana seeds. Spectral analysis of field potentials revealed attenuation of alpha2 and beta1 waves was common for all extracts. According to previous studies, this is interpreted as activation of the dopaminergic and glutamatergic transmission. In addition, Oenothera and Rhodiola extracts attenuated delta and theta power, probably related to interference with the cholinergic and norepinephrinergic transmission, respectively. Using discriminant analysis for comparison with reference pharmaceutical and botanical drugs, Rhodiola projected near the position of Ginkgo extract, whereas Oenothera extract was projected near the position of Tramadol, an analgesic drug. Physical motion was increased only in the presence of Paullinia extract and caffeine. Increases of long-term potentiation were observed in the presence of Rhodiola extract, Paullinia extract and caffeine. The combined information predicts stimulant and cognitive function-enhancing activities in humans for the Rhodiola extract, which could also be used as a possible caffeine-replacement, and antidepressant and analgesic activ展开更多
A hydroethanolic extract (20% V/V) from Herba Sideritis scardica has been recognized to positively influence cognition. The present investigation aimed at the question if this extract would be able to modify intra-hip...A hydroethanolic extract (20% V/V) from Herba Sideritis scardica has been recognized to positively influence cognition. The present investigation aimed at the question if this extract would be able to modify intra-hippocampal communication after oral administration of 100 mg/kg daily for one week. The glutamatergic synapse between Schaffer Collaterals and pyramidal cells can be tested by electric stimulation using single pulses or theta burst stimulation. The resulting population spike is modulated by compounds acting at the central nervous system or other preparations directly or as ex vivo approach. In this case the effect of the special extract was tested in vitro the next day after repetitive in vitro administration. Conventional recording technique in the in vitro hippocampus slice revealed an increase of the population spike in the presence of single stimuli and theta burst stimuli resulting in increased long-term potentiation. This effect was tried to modulate by several glutamate receptor antagonists, among them compounds targeting at the ionic NMDA receptor (CGS19755), AMPA receptor (NBQX), Kainate receptor (UBP301) and targeting at three metabotropic glutamate receptors (mGluR I (YM298198), mGluRII ((RS)-APICA)) and mGluRIII (MSOP). Only NBQX was able to prevent the action of the Sideritis scardica extract. Since the AMPA receptor has been related to cognition in several reports in the literature, it is concluded from this result that the positive action of Sideritis scardica extract on brain function involves a modulation of AMPA receptor dependent neurotransmission.展开更多
Psychophysiological effects of Sideritis herba extracts depend on biologically active ingredients, which might be different for several botanical types of this plant. The present investigation aimed at the characteriz...Psychophysiological effects of Sideritis herba extracts depend on biologically active ingredients, which might be different for several botanical types of this plant. The present investigation aimed at the characterization of extracts from Sideritis scardica and Sideritis euboa in vivo and in vitro. Construction of electropharmacograms on the base of recording of electrical field potentials from four different brain regions was used to compare the possible pharmacological effects to a database of reference drugs with known clinical indications. Whereas Sideritis scardica produced decreases of spectral power in line with stimulatory frequency patterns as observed in the presence of Ginkgo biloba extract, administration of Sideritis euboa produced opposite effects. Electrical stimulation of the Schaffer Collaterals was used to elicit a pyramidal cell response called population spike in vitro. The amplitude of this spike was determined in the presence of single as well as theta burst stimuli. Direct exposure of brain matter to Sideritis scardica extract led to concentration dependent increases of the population spike amplitude under both stimulation patterns in the range from 12.5 to 100 mg/L. On the opposite, extract from Sideritis euboa did not change the electric response up to 50 mg/L. Higher concentrations of this extract attenuated the signal amplitude. A 1:1 blend of both gave intermediate results. The in vitro results are in line with the in vivo EEG recordings, where both extracts induced opposite changes of the electric power with respect to electric frequency patterns. The results from both models suggest a stimulatory and/or memory-enhancing action for the extract from Sideritis scardica but not for Sideritis euboa extract, where a more tranquillizing effect like that observed in the presence of Humulus cone extract may be expected.展开更多
文摘Mild cognitive impairment (MCI) is regarded as a transitional stage during the development of Alzheimer’s disease. Diagnosis of MCI can be obtained by the questionnaire “DemTect” in German speaking countries. Quantitative assessment has been successfully performed using psychometric testing concomitantly with quantitative EEG recording. The present investigation aimed at the possible treatment of MCI with two botanicals, namely extracts from Sideritis scardica (500 mg) or Bacopa monnieri (320 mg) and three combinations thereof using this method in order to find a new treatment. The performance of the d2-test, an arithmetic calculation test (CPT) and a memory-test revealed better performance for the d2-test only in the presence of Sideritis extract or the combinations with Bacopa extract. Quantitative EEG assessment during the different experimental conditions showed massive differences between both extracts. Whereas Sideritis extract and its combination with a low amount of Bacopa extract (160 mg) induced increases of spectral power in fronto-temporal brain areas, Bacopa and the combination of Sideritis with high amounts of Bacopa extract produced attenuation of all waves except for delta in fronto-temporal brain areas. These differences were also documented by quantitative EEG maps in comparison to Placebo. A different action of both extracts was confirmed by discriminant analysis, where Sideritis extract and its combination with low Bacopa grouped together quite at distance to Bacopa and the combination of Sideritis with high Bacopa. A combination of Sideritis extract with a low amount of Bacopa should be tested with daily repetitive dosing for at least 4 weeks as a consequence.
文摘To find possible therapeutic applications involving the Central Nervous System (CNS) for herbals is a major challenge during functional food and drug discovery and development programmes. Despite the availability of numerous in vitro and in vivo tests, there is no single agreed screening procedure for pharmacological testing of herbal extracts with anticipated CNS activity. Experience gained from more than 25 years of testing has shown that two models give reasonably reliable orientation for future CNS applications: construction of an electropharmacogram based on wireless recording of field potentials from the depth of the brain of freely moving rats (Tele-Stereo-EEG) and recording of the population spike produced by pyramidal cells from hippocampal slices in vitro. A combination of these two methods has now been used to characterize the pharmacological profile of extracts from Rhodiola rosea root, Oenothera paradoxa seeds and Paullinia cupana seeds. Spectral analysis of field potentials revealed attenuation of alpha2 and beta1 waves was common for all extracts. According to previous studies, this is interpreted as activation of the dopaminergic and glutamatergic transmission. In addition, Oenothera and Rhodiola extracts attenuated delta and theta power, probably related to interference with the cholinergic and norepinephrinergic transmission, respectively. Using discriminant analysis for comparison with reference pharmaceutical and botanical drugs, Rhodiola projected near the position of Ginkgo extract, whereas Oenothera extract was projected near the position of Tramadol, an analgesic drug. Physical motion was increased only in the presence of Paullinia extract and caffeine. Increases of long-term potentiation were observed in the presence of Rhodiola extract, Paullinia extract and caffeine. The combined information predicts stimulant and cognitive function-enhancing activities in humans for the Rhodiola extract, which could also be used as a possible caffeine-replacement, and antidepressant and analgesic activ
文摘A hydroethanolic extract (20% V/V) from Herba Sideritis scardica has been recognized to positively influence cognition. The present investigation aimed at the question if this extract would be able to modify intra-hippocampal communication after oral administration of 100 mg/kg daily for one week. The glutamatergic synapse between Schaffer Collaterals and pyramidal cells can be tested by electric stimulation using single pulses or theta burst stimulation. The resulting population spike is modulated by compounds acting at the central nervous system or other preparations directly or as ex vivo approach. In this case the effect of the special extract was tested in vitro the next day after repetitive in vitro administration. Conventional recording technique in the in vitro hippocampus slice revealed an increase of the population spike in the presence of single stimuli and theta burst stimuli resulting in increased long-term potentiation. This effect was tried to modulate by several glutamate receptor antagonists, among them compounds targeting at the ionic NMDA receptor (CGS19755), AMPA receptor (NBQX), Kainate receptor (UBP301) and targeting at three metabotropic glutamate receptors (mGluR I (YM298198), mGluRII ((RS)-APICA)) and mGluRIII (MSOP). Only NBQX was able to prevent the action of the Sideritis scardica extract. Since the AMPA receptor has been related to cognition in several reports in the literature, it is concluded from this result that the positive action of Sideritis scardica extract on brain function involves a modulation of AMPA receptor dependent neurotransmission.
文摘Psychophysiological effects of Sideritis herba extracts depend on biologically active ingredients, which might be different for several botanical types of this plant. The present investigation aimed at the characterization of extracts from Sideritis scardica and Sideritis euboa in vivo and in vitro. Construction of electropharmacograms on the base of recording of electrical field potentials from four different brain regions was used to compare the possible pharmacological effects to a database of reference drugs with known clinical indications. Whereas Sideritis scardica produced decreases of spectral power in line with stimulatory frequency patterns as observed in the presence of Ginkgo biloba extract, administration of Sideritis euboa produced opposite effects. Electrical stimulation of the Schaffer Collaterals was used to elicit a pyramidal cell response called population spike in vitro. The amplitude of this spike was determined in the presence of single as well as theta burst stimuli. Direct exposure of brain matter to Sideritis scardica extract led to concentration dependent increases of the population spike amplitude under both stimulation patterns in the range from 12.5 to 100 mg/L. On the opposite, extract from Sideritis euboa did not change the electric response up to 50 mg/L. Higher concentrations of this extract attenuated the signal amplitude. A 1:1 blend of both gave intermediate results. The in vitro results are in line with the in vivo EEG recordings, where both extracts induced opposite changes of the electric power with respect to electric frequency patterns. The results from both models suggest a stimulatory and/or memory-enhancing action for the extract from Sideritis scardica but not for Sideritis euboa extract, where a more tranquillizing effect like that observed in the presence of Humulus cone extract may be expected.