The article presents an overview of the literature on customer equity and how customer equity provides an opportunity for marketers to make marketing strategy financially accountable. Traditionally, Return on Invest...The article presents an overview of the literature on customer equity and how customer equity provides an opportunity for marketers to make marketing strategy financially accountable. Traditionally, Return on Investment (ROI) models have been used to evaluate the financial expenditures required by the strategies as well as the financial returns gained by them. However in addition to requiring lengthy longitudinal data, these models also have the disadvantage of not evaluating the effect of the strategies on a firm’s customer equity. The dominance of customer-centered thinking over product-centered thinking calls for a shift from product-based strategies to customer-based strategies. Hence, it is important to evaluate a firm’s marketing strategies in terms of the drivers of its customer equity. The article summarizes a unified strategic framework that enables competing marketing strategy options to be traded off on the basis of projected financial return, which is operationalized as the change in a firm’s customer equity relative to the incremental expenditure necessary to produce the change.展开更多
Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices.Inspired by the role of galectin-1(Gal-1)in selective functions on...Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices.Inspired by the role of galectin-1(Gal-1)in selective functions on multiple cells and immunomodulatory processes,we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1(Gal-1-SLB)and investigate the proof of the biological effects.First,lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine(DOPE)onto that to produce a lower leaflet of the supported lipid bilayer(SLB)before fusing membrane-derived vesicles extracted from B16-F10 cells.The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion.In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation.Moreover,Gal-1-SLB presents potential function for endothelial cell migration and angiogenic activities.In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines.Finally,the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo.This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.展开更多
Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprec-edented social-ecological transformations as climate change and other global stressors intensify.The interc...Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprec-edented social-ecological transformations as climate change and other global stressors intensify.The interconnected,dendritic habitats of rivers,which often demarcate jurisdictional boundaries,generate complex management chal-lenges.Here,we explore how the Resist–Accept–Direct(RAD)framework may enhance large-river management by promoting coordinated and deliberate responses to social-ecological trajectories of change.The RAD frame-work identifies the full decision space of potential management approaches,wherein managers may resist change to maintain historical conditions,accept change toward different conditions,or direct change to a specified future with novel conditions.In the Upper Mississippi River System,managers are facing social-ecological transformations from more frequent and extreme high-water events.We illustrate how RAD-informed basin-,reach-,and site-scale decisions could:(1)provide cross-spatial scale framing;(2)open the entire decision space of potential management approaches;and(3)enhance coordinated inter-jurisdictional management in response to the trajectory of the Upper Mississippi River hydrograph.Results The RAD framework helps identify plausible long-term trajectories in different reaches(or subbasins)of the river and how the associated social-ecological transformations could be managed by altering site-scale conditions.Strategic reach-scale objectives may reprioritize how,where,and when site conditions could be altered to contribute to the basin goal,given the basin’s plausible trajectories of change(e.g.,by coordinating action across sites to alter habitat connectivity,diversity,and redundancy in the river mosaic).Conclusions When faced with long-term systemic transformations(e.g.,>50 years),the RAD framework helps explicitly consider whether or when the basin vision or goals may no longer be achievable,and direct options may open yet unconsidered potential for the basin.Em展开更多
文摘The article presents an overview of the literature on customer equity and how customer equity provides an opportunity for marketers to make marketing strategy financially accountable. Traditionally, Return on Investment (ROI) models have been used to evaluate the financial expenditures required by the strategies as well as the financial returns gained by them. However in addition to requiring lengthy longitudinal data, these models also have the disadvantage of not evaluating the effect of the strategies on a firm’s customer equity. The dominance of customer-centered thinking over product-centered thinking calls for a shift from product-based strategies to customer-based strategies. Hence, it is important to evaluate a firm’s marketing strategies in terms of the drivers of its customer equity. The article summarizes a unified strategic framework that enables competing marketing strategy options to be traded off on the basis of projected financial return, which is operationalized as the change in a firm’s customer equity relative to the incremental expenditure necessary to produce the change.
基金supported by grants the Nano Material Technology Development Program(NRF-2021M3H4A1A04092879)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICTthe Materials and Parts Technology Development Program(20023353)Advanced Technology Center(ATC+,20017939)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices.Inspired by the role of galectin-1(Gal-1)in selective functions on multiple cells and immunomodulatory processes,we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1(Gal-1-SLB)and investigate the proof of the biological effects.First,lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine(DOPE)onto that to produce a lower leaflet of the supported lipid bilayer(SLB)before fusing membrane-derived vesicles extracted from B16-F10 cells.The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion.In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation.Moreover,Gal-1-SLB presents potential function for endothelial cell migration and angiogenic activities.In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines.Finally,the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo.This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.
基金NKW and KLB were funded as part of the U.S.Army Corps of Engineers’Upper Mississippi River Restoration Program,Long Term Resource Monitoring(LTRM)elementLTRM is a cooperative effort between the U.S.Army Corps of Engineers,U.S.Geological Survey,U.S.Fish and Wildlife Service,and the states of Illinois,Iowa,Minnesota,Missouri,and Wisconsin+6 种基金GGS was funded by the United States Fish and Wildlife Service Federal Aid in Sportfish Restoration program and the Wisconsin Department of Natural ResourcesBMM was funded under Assistance Agreement No 839401101 awarded by the U.S.Environmental Protection Agency(EPA)to the University of Wisconsin Aquatic Sciences CenterThis document has not been formally reviewed by EPAThe views expressed in this document are those of the listed authors and do not necessarily reflect those of EPAEPA does not endorse any products or commercial services mentioned in this publicationAny use of trade,firm,or product names is for descriptive purposes only and does not imply endorsement by the U.S.GovernmentThe findings and conclusions in this article are those of the author(s)and do not necessarily represent the views of the U.S.Fish and Wildlife Service.
文摘Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprec-edented social-ecological transformations as climate change and other global stressors intensify.The interconnected,dendritic habitats of rivers,which often demarcate jurisdictional boundaries,generate complex management chal-lenges.Here,we explore how the Resist–Accept–Direct(RAD)framework may enhance large-river management by promoting coordinated and deliberate responses to social-ecological trajectories of change.The RAD frame-work identifies the full decision space of potential management approaches,wherein managers may resist change to maintain historical conditions,accept change toward different conditions,or direct change to a specified future with novel conditions.In the Upper Mississippi River System,managers are facing social-ecological transformations from more frequent and extreme high-water events.We illustrate how RAD-informed basin-,reach-,and site-scale decisions could:(1)provide cross-spatial scale framing;(2)open the entire decision space of potential management approaches;and(3)enhance coordinated inter-jurisdictional management in response to the trajectory of the Upper Mississippi River hydrograph.Results The RAD framework helps identify plausible long-term trajectories in different reaches(or subbasins)of the river and how the associated social-ecological transformations could be managed by altering site-scale conditions.Strategic reach-scale objectives may reprioritize how,where,and when site conditions could be altered to contribute to the basin goal,given the basin’s plausible trajectories of change(e.g.,by coordinating action across sites to alter habitat connectivity,diversity,and redundancy in the river mosaic).Conclusions When faced with long-term systemic transformations(e.g.,>50 years),the RAD framework helps explicitly consider whether or when the basin vision or goals may no longer be achievable,and direct options may open yet unconsidered potential for the basin.Em