The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to dec...The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalize展开更多
基金the National NaturalScience Foundation of China(Project Nos.40172042,40472064 , 40228004)the Ministry of Science and Technology of China(Project No.G1999043304) the Special Foundation for Doctor Subjects in China(Project No.200049107).
文摘The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalize