期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tomato Root Response to Subsurface Drip Irrigation 被引量:20
1
作者 ZHUGEYu-Ping ZHANGXu-Dong +4 位作者 ZHANGYu-Long LIJun YANGLi-Juan HUANGYi liuming-da 《Pedosphere》 SCIE CAS CSCD 2004年第2期205-212,共8页
Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the res... Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event. 展开更多
关键词 GREENHOUSE root system response soil water subsurface drip irrigation
下载PDF
Top Contact Pentacene Organic Thin Film Field Effect Transistors
2
作者 ZHANGSu-mei SHIJia-wei +4 位作者 SHIYing-xue GUOShu-xu liuming-da MADong-ge CHENJiang-shan 《Semiconductor Photonics and Technology》 CAS 2004年第4期265-267,共3页
Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly dop... Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly doped Si as the gate electrode and substrate with plasma-enhanced chemical vapor deposited (PECVD) silicon nitride as gate dielectric. Pentacene thin films were deposited by thermal evaporation on dielectrics as the active layer, then RF-magnetron sputtered amorphous aluminium was used as the source and drain contacts. Measurement results show that field effect mobility and threshold voltage are 0.043 cm2/(V·s) and 12.6 V, respectively, and on-off current ratio is nearly 1×103. 展开更多
关键词 Organic thin film PENTACENE TRANSISTORS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部