针对入侵检测中数据特征维度高的问题,提出了改进粒子群联合禁忌搜索(IPSO-TS)的特征选择算法。采用遗传算子对粒子群算法进行了改进,得到了特征选择初始最优解;对该解进行禁忌搜索(TS)得到了特征子集的全局优化解。基于KDD CUP 99数据...针对入侵检测中数据特征维度高的问题,提出了改进粒子群联合禁忌搜索(IPSO-TS)的特征选择算法。采用遗传算子对粒子群算法进行了改进,得到了特征选择初始最优解;对该解进行禁忌搜索(TS)得到了特征子集的全局优化解。基于KDD CUP 99数据集的实验结果表明,相较遗传算子整合粒子群算法(CMPSO)、粒子群算法(PSO)和粒子群联合禁忌算法,IPSO-TS减少了至少29.2%的特征,缩短了至少15%的平均检测时间,提高了至少2.96%的平均分类准确率。展开更多
文摘针对入侵检测中数据特征维度高的问题,提出了改进粒子群联合禁忌搜索(IPSO-TS)的特征选择算法。采用遗传算子对粒子群算法进行了改进,得到了特征选择初始最优解;对该解进行禁忌搜索(TS)得到了特征子集的全局优化解。基于KDD CUP 99数据集的实验结果表明,相较遗传算子整合粒子群算法(CMPSO)、粒子群算法(PSO)和粒子群联合禁忌算法,IPSO-TS减少了至少29.2%的特征,缩短了至少15%的平均检测时间,提高了至少2.96%的平均分类准确率。