Hydraulic fracturing technologies of horizontal well are important ways to develop oil-gas field with low permeability. Productivity forecast of fractured horizontal wells is a difficult problem of hydraulic fracturin...Hydraulic fracturing technologies of horizontal well are important ways to develop oil-gas field with low permeability. Productivity forecast of fractured horizontal wells is a difficult problem of hydraulic fracturing technologies. Basing on non-steady flow of fractures fluid during production, applying potential function principles, superposition principle and mathematical method for solving, coupling of seepage flow in the formation and pipe flow in the well bore, a new model on multi-fracture interference productivity forecast of fractured horizofltal well is established in this article. The results indicate the coincidence rate between this model and practice is high. The pressure loss in the horizontal well bore has definite influence on the production status of fractured horizontal wells. The productions of different fractures in horizontal well bore are unequal, the productions of outer fractures are higher than middle fractures; the pressure in the well bore shows an uneven distribution, the pressure declines gradually from finger tip to heel end. Asymmetry of fractures may make productivity of fractured horizontal wells decline. The conclusions are instructive in designing fractured horizontal well for low permeability reservoir.展开更多
Intelligent well system is the well that has a set of equipment fixed in the down hole including sensing devices, data transmission system and operating devices for information acquiring, data gathering and decision a...Intelligent well system is the well that has a set of equipment fixed in the down hole including sensing devices, data transmission system and operating devices for information acquiring, data gathering and decision analysis. By this remote control process, the smart well system can ultimately optimize well deliverability; it is used more and more often in oil fields with its stability and control technique. At present, the main intelligent well systems in the worm include SCRAMS, Direct Hydraulic, Digital Hydraulic that belongs to WellDynamics Company, InForce and InCharge that belongs to Baker Oil Tools Company, RMC that belongs to Schlumberger Company. This paper compares different types of systems and their characteristics, recommending the InCharge system as the intelligent well system for East China Sea Oil Field according to its geological and reservoir conditions.展开更多
目的用生物信息学分析严重急性呼吸综合征冠状病毒2(SARS-CoV-2)基因ORF3a蛋白质。方法从UniProt数据库获取ORF3a蛋白质的氨基酸序列,应用ProtParam tool分析其理化性质,SOPMA、SWISS-MODEL预测二、三级结构,PortScale、Signal IP 4.0 S...目的用生物信息学分析严重急性呼吸综合征冠状病毒2(SARS-CoV-2)基因ORF3a蛋白质。方法从UniProt数据库获取ORF3a蛋白质的氨基酸序列,应用ProtParam tool分析其理化性质,SOPMA、SWISS-MODEL预测二、三级结构,PortScale、Signal IP 4.0 Server、TMHMM Server 2.0分析ORF3a蛋白质亲疏水性、信号肽、跨膜区。应用ABCpred、SYFPEITHI和NetPhos 3.1 Server预测B、T细胞表面抗原表位及磷酸化位点,VaxiJenv 2.0、AlgPred server预测抗原性和过敏原性。结果ORF3a蛋白质含275个氨基酸,为稳定、疏水性蛋白质,有3个跨膜螺旋区、29个磷酸化位点,含多个T、B细胞抗原表位,具有抗原性和非过敏原性。结论ORF3a蛋白质结构稳定,含多个T、B细胞抗原表位,可为研究SARS-CoV-2多表位疫苗提供基础。展开更多
应用网络药理学和分子对接探讨猫爪草多成分、多靶点、多通路治疗肺腺癌的作用机制。根据口服利用度和类药性的分析条件,采用中药系统药理学数据库与分析平台数据库筛选猫爪草主要活性成分及作用靶点;疾病靶点在GeneCards和OMIM数据库...应用网络药理学和分子对接探讨猫爪草多成分、多靶点、多通路治疗肺腺癌的作用机制。根据口服利用度和类药性的分析条件,采用中药系统药理学数据库与分析平台数据库筛选猫爪草主要活性成分及作用靶点;疾病靶点在GeneCards和OMIM数据库中获得;利用R软件绘制维恩图,获得活性成分和疾病的交集靶点,利用STRING数据库构建蛋白质-蛋白质相互作用网络;利用Bioconductor数据库对预测靶点进行GO(Gene ontology)功能富集分析和KEGG(Kyoto encyclopedia of genes and genomes)信号通路分析。结果表明:筛选出猫爪草的10个潜在活性成分和40个作用靶点,其中有36个靶点与肺腺癌相关;主要活性成分为β-谷甾醇、豆甾醇等,这些活性成分作用于PTGS2、BCL2、BAX、CASP9、CASP3、RXRA等靶点,通过调控神经变性的途径-多种疾病、神经活性配体-受体相互作用、小细胞肺腺癌、细胞凋亡、多细胞凋亡、铂类耐药、p53信号传导途径、大肠癌等通路发挥抗肿瘤作用。对猫爪草的有效成分和潜在靶点进行预测,为药物的应用和开发提供了新思路。展开更多
基金the National Natural Science Foundation of China (Grant No. 90210018)the National Basic Research Program of China (973 Program, Grant No. 2001CB209108).
文摘Hydraulic fracturing technologies of horizontal well are important ways to develop oil-gas field with low permeability. Productivity forecast of fractured horizontal wells is a difficult problem of hydraulic fracturing technologies. Basing on non-steady flow of fractures fluid during production, applying potential function principles, superposition principle and mathematical method for solving, coupling of seepage flow in the formation and pipe flow in the well bore, a new model on multi-fracture interference productivity forecast of fractured horizofltal well is established in this article. The results indicate the coincidence rate between this model and practice is high. The pressure loss in the horizontal well bore has definite influence on the production status of fractured horizontal wells. The productions of different fractures in horizontal well bore are unequal, the productions of outer fractures are higher than middle fractures; the pressure in the well bore shows an uneven distribution, the pressure declines gradually from finger tip to heel end. Asymmetry of fractures may make productivity of fractured horizontal wells decline. The conclusions are instructive in designing fractured horizontal well for low permeability reservoir.
文摘Intelligent well system is the well that has a set of equipment fixed in the down hole including sensing devices, data transmission system and operating devices for information acquiring, data gathering and decision analysis. By this remote control process, the smart well system can ultimately optimize well deliverability; it is used more and more often in oil fields with its stability and control technique. At present, the main intelligent well systems in the worm include SCRAMS, Direct Hydraulic, Digital Hydraulic that belongs to WellDynamics Company, InForce and InCharge that belongs to Baker Oil Tools Company, RMC that belongs to Schlumberger Company. This paper compares different types of systems and their characteristics, recommending the InCharge system as the intelligent well system for East China Sea Oil Field according to its geological and reservoir conditions.
文摘应用网络药理学和分子对接探讨猫爪草多成分、多靶点、多通路治疗肺腺癌的作用机制。根据口服利用度和类药性的分析条件,采用中药系统药理学数据库与分析平台数据库筛选猫爪草主要活性成分及作用靶点;疾病靶点在GeneCards和OMIM数据库中获得;利用R软件绘制维恩图,获得活性成分和疾病的交集靶点,利用STRING数据库构建蛋白质-蛋白质相互作用网络;利用Bioconductor数据库对预测靶点进行GO(Gene ontology)功能富集分析和KEGG(Kyoto encyclopedia of genes and genomes)信号通路分析。结果表明:筛选出猫爪草的10个潜在活性成分和40个作用靶点,其中有36个靶点与肺腺癌相关;主要活性成分为β-谷甾醇、豆甾醇等,这些活性成分作用于PTGS2、BCL2、BAX、CASP9、CASP3、RXRA等靶点,通过调控神经变性的途径-多种疾病、神经活性配体-受体相互作用、小细胞肺腺癌、细胞凋亡、多细胞凋亡、铂类耐药、p53信号传导途径、大肠癌等通路发挥抗肿瘤作用。对猫爪草的有效成分和潜在靶点进行预测,为药物的应用和开发提供了新思路。