期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solution for generalized fuzzy fractional Kortewege-de Varies equation using a robust fuzzy double parametric approach 被引量:2
1
作者 L.Verma R.Meher +1 位作者 Z.Avazzadeh O.Nikan 《Journal of Ocean Engineering and Science》 SCIE 2023年第6期602-622,共21页
The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a cryst... The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a crystal lattice.This paper focuses on developing and analysing a resilient double parametric analytical approach for the nonlinear fuzzy fractional KdV equation(FFKdVE)under gH-differentiability of Caputo fractional order,namely the q-Homotopy analysis method with the Shehu transform(q-HASTM).A triangular fuzzy number describes the Caputo fractional derivative of orderα,0<α≤1,for modelling problem.The fuzzy velocity profiles with crisp and fuzzy conditions at different spatial positions are in-vestigated using a robust double parametric form-based q-HASTM with its convergence analysis.The ob-tained results are compared with existing works in the literature to confirm the efficacy and effectiveness of the method. 展开更多
关键词 Fuzzy set Double parametric approach Hukuhara differentiability Shehu transform KdV equation q-HAShTM Caputo fractional derivative
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部