Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the tr...Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with exte展开更多
Research status of high strength low alloy TRIP (transformation induced plasticity) steels for automobile structural parts is briefly described. Composition and microstruc-ture factors especially the morphology, size ...Research status of high strength low alloy TRIP (transformation induced plasticity) steels for automobile structural parts is briefly described. Composition and microstruc-ture factors especially the morphology, size and volume fraction of retained austenite, which largely influence the strength and ductility of the steel, are reviewed and discussed one after another. Modelling of the inter-critical annealing and martempering processes as well as the designing of the TRIP steel aided by commercial software are introduced. Some special aspects of the dynamic mechanical properties of TRIP steel are firstly reported.展开更多
In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems. A convergence analysis for this iteration is presented. The numerical performance ...In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems. A convergence analysis for this iteration is presented. The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration. We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.展开更多
Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous recon...Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous reconstruction of the magnetosheath and magnetopause using a few images recorded simultaneously from a few spacecraft.This work is motivated by the prospect of possibly having two or three soft X-ray imagers in space in the coming years,and that many phenomena which occur at the magnetopause boundary,such as reconnection events and pressure pulse responses,do not lend themselves as well to superposed epoch analysis.If the reconstruction is successful-which we demonstrate in this paper that it can be-this collection of imagers can be used to reconstruct the magnetosheath and magnetopause from a single image from each spacecraft,allowing for high time resolution reconstructions.In this paper we explore the reconstruction using,two,three,and four spacecraft.We show that the location of the subsolar point of the magnetopause can be determined with just two satellites,and that volume emissions of soft X-rays,and the shape of the boundary,can be reconstructed using three or more satellites.展开更多
Background Each GECAM satellite payload contains 25 gamma-ray detectors(GRDs),which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts(GRBs).GRD was designed using lanthanum bromide(LaBr...Background Each GECAM satellite payload contains 25 gamma-ray detectors(GRDs),which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts(GRBs).GRD was designed using lanthanum bromide(LaBr3)crystal as the sensitive material with the rear end coupled with silicon photomultiplier(SiPM)array for readout.Purpose In aerospace engineering design of GRD,there are many key points to be studied.In this paper,we present the specific design scheme of GRD,the assembly and the performance test results of detectors.Methods Based on Monte Carlo simulation and experimental test results,the specific schematic design and assembling process of GRD were optimized.After being fully assembled,the GRDs were conducted performance tests by using radioactive source and also conducted random vibration tests.Result and conclusion The test results show that all satellite-borne GRDs have energy resolution<16%at 59.5 keV,meeting requirements of satellite in scientific performance.The random vibration test shows that GRD can maintain in a stable performance,which meets the requirement of spatial application.展开更多
From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ exper...From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ.展开更多
First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark w...First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.展开更多
Over the past decades,considerable efforts have been made in the commercial application of bulk metallic glasses(BMGs).Despite great challenges faced by the industrial players,significant progress has been achieved,an...Over the past decades,considerable efforts have been made in the commercial application of bulk metallic glasses(BMGs).Despite great challenges faced by the industrial players,significant progress has been achieved,and millions of commercial products for various kinds of applications have been shipped around the world.Here in this paper,we shall present the alloys suitable for the actual products in the application and discuss the merits of the processing technique of BMGs over the existing processing techniques and materials.Most importantly we demonstrate the typical examples of products over the past few years.Finally,future directions of the industrialization of BMGs are also discussed.展开更多
Background The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor(GECAM)is dedicated to detecting gravitational wave gamma-ray bursts.It is capable of all-sky monitoring over and discoveri...Background The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor(GECAM)is dedicated to detecting gravitational wave gamma-ray bursts.It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena.GECAM consists of two microsatellites,each equipped with 8 charged particle detectors(CPDs)and 25 gamma-ray detectors(GRDs).Purpose The CPD is used to measure charged particles in the space environment,monitor energy and flow intensity changes,and identify between gamma-ray bursts and space charged particle events in conjunction with GRD.Methods CPD uses plastic scintillator as the sensitive material for detection,silicon photomultiplier array as the optically readable device,and the inlaid Am-241 radioactive source as the onboard calibration means.Conclusion In this paper,we will present the working principle,physical design,functional implementation and preliminary performance test results of the CPD.As a result,the energy range of electron,gamma-ray detection efficiency and dead time are tested to be better than the indexes required through the ground calibration experiment.展开更多
The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in...The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.展开更多
Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts,which is related to gravitational waves of double compact object mergers.The GECAM satellite also detects and investigates ...Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts,which is related to gravitational waves of double compact object mergers.The GECAM satellite also detects and investigates various bursts of high-energy celestial bodies.Purposes and methods In this study,we designed,developed and calibrated the payload and launched it into orbit with GECAM satellite.The payload consists of the gamma ray detector(GRD,for detecting 4 keV–4 MeV X/γray),the charged particle detector(CPD,for detecting 150 keV–5 MeV charged particle),and the electronic box(EBOX).The all-sky field coverage is achieved via two 229-degree large-area satellites positioned 180 degrees apart and are on opposite sides of the geo-center.Each satellite is equipped with 25 GRDs and 8 CPDs;thus,the satellite can identify charged particle bursts in space.Gamma-ray detectors adopt lanthanum bromide crystal technology combined with silicon photomultipliers.This is the first time that this technology was used massively in space detectors.Conclusions The GECAM satellite can quickly determine the direction of gamma-ray bursts(positioning)via indexing and fitting method,while the transmit variability,energy spectrum and direction of the gamma-ray bursts guide subsequent observations through the Beidou-3 RDSS in quasi-real time.It will play an important role in the study of high energy celestial bursts.展开更多
Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)satellite developed a SiPM-based gamma-ray detector to monitor the gravitational wave-related GRBs and guide subsequent o...Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)satellite developed a SiPM-based gamma-ray detector to monitor the gravitational wave-related GRBs and guide subsequent observations in other wavelengths of EM.Purpose As all the available SiPM devices belong to commercial grade,quality assurance tests need to be performed in accordance with the aerospace specifcations.Methods In the SiPM application of GECAM,quality assurance experiments were conducted.The mechanism of the failure of SiPM devices was analyzed during the development process.Result Based on the quality assurance test results,the fnal pass rate of SiPM array was 95%.Based on the failure analysis,it was found that a piece of SiPM had a leakage channel after longtime operation due to device defects.Conclusion According to the accumulated experience,in the reliability test of SiPM,it is necessary to pay special attention to test the impedance of each pin of SiPM to ground and confrm that the power switch state of SiPM is controllable.展开更多
Purpose The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy.With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts,the gravit...Purpose The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy.With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts,the gravitational wave highenergy electromagnetic counterpart all-sky monitor(GECAM)possesses a quasi-real-time early warning ability and plays an important role in positioning the sources of gravitational waves and in subsequent observations.Each satellite of GECAM was fitted with 253-inch-diameter gamma-ray detectors(GRD),covering an energy range of 8–2 MeV.GRDs have adopted silicon photomultiplier tubes(SiPM)in lieu of photomultiplier tubes(PMT)to adapt to the dimensional limitations of micro-satellites.Methods A unique 3-inch circular SiPM array was designed.In this design,646×6 mm chips were arranged evenly in a circular manner with the seams filled with reflecting films,thus achieving satisfactory uniformity of light collection.The integrated pre-amplifier circuit on the back of the SiPM array adopted two-level grouping and summing;further,it achieved a satisfactory signal-to-noise ratio.Two high-gain and low-gain channels were adopted to achieve a large dynamic range,and two independent power supply units were used,where each unit can be closed separately,thus improving reliability.Results Performance studies show that this SiPM array meets the requirements of GECAM.Conclusion A 3-inch SiPM array have been developed that uses grouped summation,reflective films,a circular arrangement,two groups of independent power supplies,high-and low-gain signals,differential signal output technologies,etc.This solution can be used not only for GECAM,but also as a general solution for SiPM-based scintillation detectors.展开更多
Background The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor(GECAM)consists of 2 microsatellites,each of which contains 25 GRD(LaBr3)detectors and 8 CPD(plastic scintillator)detectors.Meth...Background The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor(GECAM)consists of 2 microsatellites,each of which contains 25 GRD(LaBr3)detectors and 8 CPD(plastic scintillator)detectors.Method silicon photomultiplier(SiPM)array is used to read each detector.The output signal of these detectors with SiPM array is very special and challenging to readout.In this study,a novel data acquisition(DAQ)algorithm for these detectors is designed and implemented,and the content of the output event packet is defined.Result and Conclusion The performances,including the event acquisition efficiency of this DAQ algorithm,are extensively verified through experimental tests.From the on-ground and in-flight tests,this algorithm has excellent performance despite the very limited resources and short development time of GECAM mission.展开更多
The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 T...The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV,corresponding to an integrated luminosity of 5.2 fb^(-1).The baryons are reconstructed via their decays to Λ^(+)_(c)π^(-)and E^(+)_(c)π^(-).No significant excess is fbund for invariant masses between 6700 and 7300 MeV/c^(2),in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c.Upper limits are set on the ratio of the Ω^(0)_(bc)and E^(0)_(bc)production cross-section times the branching fraction to Λ^(+)_(c)π^(-)(E^(+)_(c)π^(-))relative to that of the Λ^(0)_(b)(E^(0)_(b))baryon,for different lifetime hypotheses,at 95%confidence level.The upper limits range from 0.5 x 10^(-4)to 2.5 x 10^(-4)for theΩ^(0)_(bc)→Λ^(+)_(c)π^(-)(E^(0)_(bc)→Λ^(+)_(c)π^(-))decay,and from 1.4x 10^(-3)to 6.9 x 10^(-3)for theΩ^(0)_(bc)→E^(+)_(c)π^(-)(E^(0)_(bc)→E^(+)_(c)π^(-))decay,depending on the considered mass and lifetime of theΩ^(0)_(bc)(E^(0)_(bc))baryon.展开更多
A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No signific...A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.展开更多
Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- M...Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.展开更多
We proposed a mesh-free method, the called node-based smoothed point interpolation method(NS-PIM),for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence...We proposed a mesh-free method, the called node-based smoothed point interpolation method(NS-PIM),for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence of the displacement functions are further weakened. In static problems, the beams with three types of boundary conditions are analyzed, and the results are compared with the exact solution, which shows the effectiveness of this method and can provide an upper bound solution for the deflection.This means that the NS-PIM makes the system soften. The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem, considering a rotating flexible cantilever beam. In this case, the rotating flexible cantilever beam considers not only the transverse deformations,but also the longitudinal deformations. The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange’s equations of the second type. Simulation results of the NS-PIM are compared with those obtained using finite element method(FEM) and assumed mode method. It is found that compared with FEM, the NS-PIM has anti-ill solving ability under the same calculation conditions.展开更多
In the present work,free vibration and buckling analyses of sandwich plates with various functionally graded foam cores are carried out.Foam cores are assumed to be made of metal,and three different configurations of ...In the present work,free vibration and buckling analyses of sandwich plates with various functionally graded foam cores are carried out.Foam cores are assumed to be made of metal,and three different configurations of the porous distribution in the core layer are taken into consideration.To carry out a comparative study between the distributions of pores in the core foam,the mass of foam in all three cases is kept the same.The vibration and buckling behaviors of skew plates are also analyzed as a part of the current investigation.The principle of minimization of potential energy and Hamilton’s principle are used for the derivation of the governing equations,while a C-0 finite element-based higher-order zigzag formulation is developed to solve the free vibration and buckling problems.The influences of gradation laws,boundary conditions,skew angle and geometry of plates are studied in detail for the dynamic and stability characteristics.It is found that both the non-dimensional natural frequency and buckling load decrease with the increase in the thickness of the metal foam cores,while they show an increasing trend as the skew angle of the plate increases.展开更多
As one of the most important forming technologies for industrial bulk metallic glass (BMG) parts withcomplex shapes, high-pressure die casting (HPDC) can fill a die cavity with a glass-forming metallic liquidin millis...As one of the most important forming technologies for industrial bulk metallic glass (BMG) parts withcomplex shapes, high-pressure die casting (HPDC) can fill a die cavity with a glass-forming metallic liquidin milliseconds. However, to our knowledge, the correlation between flow and crystallization behavior inthe HPDC process has never been established. In this study, we report on the solidification behavior ofZr_(55)Cu_(30)Ni_(5)Al_(10) glass forming liquid under various flow rates. Surprisingly, the resulting alloys display adecreasing content of amorphous phase with increase of flow rate, i.e. increase of cooling rate, suggestingthat crystallization kinetics of glass-forming metallic liquids in the HPDC process is strongly dependenton the flow field. Analysis reveals that the accelerated crystallization behavior is mainly ascribed to therapid increase in viscosity with a decreasing temperature as well as to the huge shear effect in the glassforming liquid at the end stage of the filling process when the temperature is close to the glass-transitionpoint;this results in a transition from diffusion- to advection-dominated transport. The current investigation suggests that flow-related crystallization must be considered to assess the intrinsic glass-formingability of BMGs produced via HPDC. The obtained results will not only improve the understanding ofcrystallization dynamics but also promote the high-quality production and large-scale application of BMGparts.展开更多
基金Supported in part by the Offices of NP and HEP within the U.S.DOE Office of Sciencethe U.S.NSF+18 种基金the Sloan Foundationthe DFG cluster of excellence‘Origin and Structure of the Universe’of Germany,CNRS/IN2P3STFC and EPSRC of the United KingdomFAPESP CNPq of Brazil,Ministry of Ed.Sci.of the Russian FederationNNSFCCASMoSTMoE of ChinaGA and MSMT of the Czech RepublicFOM and NWO of the NetherlandsDAEDSTCSIR of IndiaPolish Ministry of Sci.Higher Ed.,Korea Research Foundation,Ministry of Sci.,Ed.Sports of the Rep.Of CroatiaRussian Ministry of Sci.and TechRos-Atom of Russia。
文摘Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with exte
基金supported by the National Natural Science Foundation of China(No.50171038)the Chinese Society for Metals and China-Belgium Bilateral Project(No.2001-242).
文摘Research status of high strength low alloy TRIP (transformation induced plasticity) steels for automobile structural parts is briefly described. Composition and microstruc-ture factors especially the morphology, size and volume fraction of retained austenite, which largely influence the strength and ductility of the steel, are reviewed and discussed one after another. Modelling of the inter-critical annealing and martempering processes as well as the designing of the TRIP steel aided by commercial software are introduced. Some special aspects of the dynamic mechanical properties of TRIP steel are firstly reported.
文摘In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems. A convergence analysis for this iteration is presented. The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration. We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+2 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of Chinasupported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)。
文摘Following our earlier work on tomographic reconstruction of the magnetosheath soft X-ray emissions with superposed epoch analysis of many images recorded from a single spacecraft we now explore the instantaneous reconstruction of the magnetosheath and magnetopause using a few images recorded simultaneously from a few spacecraft.This work is motivated by the prospect of possibly having two or three soft X-ray imagers in space in the coming years,and that many phenomena which occur at the magnetopause boundary,such as reconnection events and pressure pulse responses,do not lend themselves as well to superposed epoch analysis.If the reconstruction is successful-which we demonstrate in this paper that it can be-this collection of imagers can be used to reconstruct the magnetosheath and magnetopause from a single image from each spacecraft,allowing for high time resolution reconstructions.In this paper we explore the reconstruction using,two,three,and four spacecraft.We show that the location of the subsolar point of the magnetopause can be determined with just two satellites,and that volume emissions of soft X-rays,and the shape of the boundary,can be reconstructed using three or more satellites.
基金This research was supported by the National Natural Science Foundation of China,Grant No.11775251the strategic leading science and technology program of Chinese Academy of Sciences(Grant No.XDA 15360100,XDA 15360102).
文摘Background Each GECAM satellite payload contains 25 gamma-ray detectors(GRDs),which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts(GRBs).GRD was designed using lanthanum bromide(LaBr3)crystal as the sensitive material with the rear end coupled with silicon photomultiplier(SiPM)array for readout.Purpose In aerospace engineering design of GRD,there are many key points to be studied.In this paper,we present the specific design scheme of GRD,the assembly and the performance test results of detectors.Methods Based on Monte Carlo simulation and experimental test results,the specific schematic design and assembling process of GRD were optimized.After being fully assembled,the GRDs were conducted performance tests by using radioactive source and also conducted random vibration tests.Result and conclusion The test results show that all satellite-borne GRDs have energy resolution<16%at 59.5 keV,meeting requirements of satellite in scientific performance.The random vibration test shows that GRD can maintain in a stable performance,which meets the requirement of spatial application.
基金supported by the following funding sources:Science Committee of the Republic of Armenia Grant No.18T-1C180Australian Research Council and research grant Nos.DP180102629,DP170102389,DP170102204,DP150103061,FT130100303,and FT130100018+22 种基金Austrian Federal Ministry of Education,Science and Research,and Austrian Science Fund No.P 31361-N36Natural Sciences and Engineering Research Council of Canada,Compute Canada and CANARIEChinese Academy of Sciences and research grant No.QYZDJ-SSW-SLH011National Natural Science Foundation of China and research grant Nos.11521505,11575017,11675166,11761141009,11705209,and 11975076LiaoNing Revitalization Talents Program under contract No.XLYC1807135Shanghai Municipal Science and Technology Committee under contract No.19ZR1403000Shanghai Pujiang Program under Grant No.18PJ1401000the CAS Center for Excellence in Particle Physics(CCEPP)the Ministry of Education,Youth and Sports of the Czech Republic under Contract No.LTT17020Charles University grants SVV260448 and GAUK 404316European Research Council,7th Framework PIEF-GA-2013-622527Horizon 2020 Marie Sklodowska-Curie grant agreement No.700525’NIOBE,’Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER grant agreement No.644294Horizon 2020 ERC-Advanced Grant No.267104NewAve No.638528(European grants)L’Institut National de Physique Nucléaire et de Physique des Particules(IN2P3)du CNRS(France),BMBF,DFG,HGF,MPG and AvH Foundation(Germany)Department of Atomic Energy and Department of Science and Technology(India)Israel Science Foundation grant No.2476/17United States-Israel Binational Science Foundation grant No.2016113Istituto Nazionale di Fisica Nucleare and the research grants BELLE2Japan Society for the Promotion of Science,Grant-in-Aid for Scientific Research grant Nos.16H03968,16H03993,16H06492,16K05323,17H01133,17H05405,18K03621,18H03710,18H05226,19H00682,26220706,and 26400255the National Institute of Informatics,and Science Information NETwork 5(SINET5)the Ministry of Education,Culture,Sports,Science,an
文摘From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ.
文摘First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.
基金financial support from the Shenyang National Laboratory for Materials Science,Institute of Metal Research。
文摘Over the past decades,considerable efforts have been made in the commercial application of bulk metallic glasses(BMGs).Despite great challenges faced by the industrial players,significant progress has been achieved,and millions of commercial products for various kinds of applications have been shipped around the world.Here in this paper,we shall present the alloys suitable for the actual products in the application and discuss the merits of the processing technique of BMGs over the existing processing techniques and materials.Most importantly we demonstrate the typical examples of products over the past few years.Finally,future directions of the industrialization of BMGs are also discussed.
基金This research was supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences,Grant No.XDA 15360102.
文摘Background The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor(GECAM)is dedicated to detecting gravitational wave gamma-ray bursts.It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena.GECAM consists of two microsatellites,each equipped with 8 charged particle detectors(CPDs)and 25 gamma-ray detectors(GRDs).Purpose The CPD is used to measure charged particles in the space environment,monitor energy and flow intensity changes,and identify between gamma-ray bursts and space charged particle events in conjunction with GRD.Methods CPD uses plastic scintillator as the sensitive material for detection,silicon photomultiplier array as the optically readable device,and the inlaid Am-241 radioactive source as the onboard calibration means.Conclusion In this paper,we will present the working principle,physical design,functional implementation and preliminary performance test results of the CPD.As a result,the energy range of electron,gamma-ray detection efficiency and dead time are tested to be better than the indexes required through the ground calibration experiment.
基金Supported by CERNnational agencies:CAPES+30 种基金CNPqFAPERJFINEP(Brazil)MOSTNSFC(China)CNRS/IN2P3(France)BMBFDFGMPG(Germany)INFN(Italy)NWO(Netherlands)MNiSWNCN(Poland)MEN/IFA(Romania)MSHE(Russia)MinECo(Spain)SNSFSER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NPNSF(USA)Key Research Program of Frontier Sciences of CAS,CAS PIFIthe Thousand Talents Program(China)RFBRRSFYandex LLC(Russia)GVAXuntaGalGENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)
文摘The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.
基金This project is supported by National Natural Science Foundation of China(12173038)the strategic leading science and technology program(XDA 15360100,XDA 15360102)of the Chinese Academy of Sciences.
文摘Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts,which is related to gravitational waves of double compact object mergers.The GECAM satellite also detects and investigates various bursts of high-energy celestial bodies.Purposes and methods In this study,we designed,developed and calibrated the payload and launched it into orbit with GECAM satellite.The payload consists of the gamma ray detector(GRD,for detecting 4 keV–4 MeV X/γray),the charged particle detector(CPD,for detecting 150 keV–5 MeV charged particle),and the electronic box(EBOX).The all-sky field coverage is achieved via two 229-degree large-area satellites positioned 180 degrees apart and are on opposite sides of the geo-center.Each satellite is equipped with 25 GRDs and 8 CPDs;thus,the satellite can identify charged particle bursts in space.Gamma-ray detectors adopt lanthanum bromide crystal technology combined with silicon photomultipliers.This is the first time that this technology was used massively in space detectors.Conclusions The GECAM satellite can quickly determine the direction of gamma-ray bursts(positioning)via indexing and fitting method,while the transmit variability,energy spectrum and direction of the gamma-ray bursts guide subsequent observations through the Beidou-3 RDSS in quasi-real time.It will play an important role in the study of high energy celestial bursts.
基金This research is supported by the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA15360102.
文摘Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)satellite developed a SiPM-based gamma-ray detector to monitor the gravitational wave-related GRBs and guide subsequent observations in other wavelengths of EM.Purpose As all the available SiPM devices belong to commercial grade,quality assurance tests need to be performed in accordance with the aerospace specifcations.Methods In the SiPM application of GECAM,quality assurance experiments were conducted.The mechanism of the failure of SiPM devices was analyzed during the development process.Result Based on the quality assurance test results,the fnal pass rate of SiPM array was 95%.Based on the failure analysis,it was found that a piece of SiPM had a leakage channel after longtime operation due to device defects.Conclusion According to the accumulated experience,in the reliability test of SiPM,it is necessary to pay special attention to test the impedance of each pin of SiPM to ground and confrm that the power switch state of SiPM is controllable.
基金This research was supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDBSSW-SLH012)the National Natural Science Foundation of China(11775251,11775252)the strategic leading science and technology program of Chinese Academy of Sciences(XDA 15360100,XDA 15360102).
文摘Purpose The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy.With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts,the gravitational wave highenergy electromagnetic counterpart all-sky monitor(GECAM)possesses a quasi-real-time early warning ability and plays an important role in positioning the sources of gravitational waves and in subsequent observations.Each satellite of GECAM was fitted with 253-inch-diameter gamma-ray detectors(GRD),covering an energy range of 8–2 MeV.GRDs have adopted silicon photomultiplier tubes(SiPM)in lieu of photomultiplier tubes(PMT)to adapt to the dimensional limitations of micro-satellites.Methods A unique 3-inch circular SiPM array was designed.In this design,646×6 mm chips were arranged evenly in a circular manner with the seams filled with reflecting films,thus achieving satisfactory uniformity of light collection.The integrated pre-amplifier circuit on the back of the SiPM array adopted two-level grouping and summing;further,it achieved a satisfactory signal-to-noise ratio.Two high-gain and low-gain channels were adopted to achieve a large dynamic range,and two independent power supply units were used,where each unit can be closed separately,thus improving reliability.Results Performance studies show that this SiPM array meets the requirements of GECAM.Conclusion A 3-inch SiPM array have been developed that uses grouped summation,reflective films,a circular arrangement,two groups of independent power supplies,high-and low-gain signals,differential signal output technologies,etc.This solution can be used not only for GECAM,but also as a general solution for SiPM-based scintillation detectors.
基金The authors would like to thank all colleagues for helpful suggestions and comments.This study was supported by the National Natural Science Foundation of China(Grant No.11803039 and 12173038)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA 15360100 and XDA 15360102).
文摘Background The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor(GECAM)consists of 2 microsatellites,each of which contains 25 GRD(LaBr3)detectors and 8 CPD(plastic scintillator)detectors.Method silicon photomultiplier(SiPM)array is used to read each detector.The output signal of these detectors with SiPM array is very special and challenging to readout.In this study,a novel data acquisition(DAQ)algorithm for these detectors is designed and implemented,and the content of the output event packet is defined.Result and Conclusion The performances,including the event acquisition efficiency of this DAQ algorithm,are extensively verified through experimental tests.From the on-ground and in-flight tests,this algorithm has excellent performance despite the very limited resources and short development time of GECAM mission.
基金CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+18 种基金CNRS/IN2P3(France)BMBF,DFG,MPG(Germany)INFN(Italy)NWO(Netherlands)MNiSW,NCN(Poland)MEN/IFA(Romania)MSHE(Russia)MICINN(Spain)SNSF,SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NP,NSF(USA).We acknowledge the computing resources that are provided by CERN,IN2P3(France),KIT and DESY(Germany),INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United Kingdom),RRCKI and Yandex LLC(Russia),CSCS(Switzerland),IFIN-HH(Romania),CBPF(Brazil),PL-GRID(Poland)and NERSC(USA)AvH Foundation(Germany)EPLANET,Marie Sklodowska-Curie Actions and ERC(European Union)A*MIDEX,ANR,Labex P2IO and OCEVU,Region Auvergne-Rhdne-Alpes(France)Key Research Program of Frontier Sciences of CAS,CAS PIFI,CAS CCEPP,Fundamental Research Funds for the Central Universities,and Sci.Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,XuntaGal,GENCAT(Spain)the Leverhulme Trust,the Royal Society and UKRI(United Kingdom)。
文摘The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV,corresponding to an integrated luminosity of 5.2 fb^(-1).The baryons are reconstructed via their decays to Λ^(+)_(c)π^(-)and E^(+)_(c)π^(-).No significant excess is fbund for invariant masses between 6700 and 7300 MeV/c^(2),in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c.Upper limits are set on the ratio of the Ω^(0)_(bc)and E^(0)_(bc)production cross-section times the branching fraction to Λ^(+)_(c)π^(-)(E^(+)_(c)π^(-))relative to that of the Λ^(0)_(b)(E^(0)_(b))baryon,for different lifetime hypotheses,at 95%confidence level.The upper limits range from 0.5 x 10^(-4)to 2.5 x 10^(-4)for theΩ^(0)_(bc)→Λ^(+)_(c)π^(-)(E^(0)_(bc)→Λ^(+)_(c)π^(-))decay,and from 1.4x 10^(-3)to 6.9 x 10^(-3)for theΩ^(0)_(bc)→E^(+)_(c)π^(-)(E^(0)_(bc)→E^(+)_(c)π^(-))decay,depending on the considered mass and lifetime of theΩ^(0)_(bc)(E^(0)_(bc))baryon.
基金support from AvH Foundation(Germany)EPLANET,Marie Sk lodowska-Curie Actions and ERC(European Union)+11 种基金A*MIDEXANRLabex P2IOOCEVURégion Auvergne-Rh?ne-Alpes(France)Key Research Program of Frontier Sciences of CASCAS PIFIThousand Talents ProgramSci.&Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,Xunta Gal and GENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)。
文摘A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.
文摘Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.
基金the support from the National Natural Science Foundation of China (Grants 11272155, 11132007, and 11502113)the Fundamental Research Funds for Central Universities (Grant 30917011103)the China Scholarship Council for one year study at the University of Cincinnati
文摘We proposed a mesh-free method, the called node-based smoothed point interpolation method(NS-PIM),for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence of the displacement functions are further weakened. In static problems, the beams with three types of boundary conditions are analyzed, and the results are compared with the exact solution, which shows the effectiveness of this method and can provide an upper bound solution for the deflection.This means that the NS-PIM makes the system soften. The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem, considering a rotating flexible cantilever beam. In this case, the rotating flexible cantilever beam considers not only the transverse deformations,but also the longitudinal deformations. The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange’s equations of the second type. Simulation results of the NS-PIM are compared with those obtained using finite element method(FEM) and assumed mode method. It is found that compared with FEM, the NS-PIM has anti-ill solving ability under the same calculation conditions.
基金supporting the present work through Ph.D.scholarship grant(2K17/NITK/PHD/6170004).Tanmoy Mukhopadhyay acknowledges SERB,India,for providing research support through the grant SERB/AE/2020316.
文摘In the present work,free vibration and buckling analyses of sandwich plates with various functionally graded foam cores are carried out.Foam cores are assumed to be made of metal,and three different configurations of the porous distribution in the core layer are taken into consideration.To carry out a comparative study between the distributions of pores in the core foam,the mass of foam in all three cases is kept the same.The vibration and buckling behaviors of skew plates are also analyzed as a part of the current investigation.The principle of minimization of potential energy and Hamilton’s principle are used for the derivation of the governing equations,while a C-0 finite element-based higher-order zigzag formulation is developed to solve the free vibration and buckling problems.The influences of gradation laws,boundary conditions,skew angle and geometry of plates are studied in detail for the dynamic and stability characteristics.It is found that both the non-dimensional natural frequency and buckling load decrease with the increase in the thickness of the metal foam cores,while they show an increasing trend as the skew angle of the plate increases.
基金L.H.Liu would like to thank the financial support from the National Natural Science Foundation of China(No.52001123)the China Postdoctoral Science Foundation(Nos.2019TQ0099 and 2019M662908)+5 种基金Guangdong Basic and the Applied Basic Research Foundation(No.2019A1515110215)the Foundation for Distinguished Young Talents in Higher Education of Guangdong(No.2019KQNCX003)the Fundamental Research Funds for the Central Universities(No.2020ZYGXZR030)the Open Fund of National Engineering Research Center of Near-net-shape Forming for Metallic Materials(No.2019003)C.Yang would like to thank the financial support from the Key Basic and Applied Research Program of Guangdong Province(No.2019B030302010)the National Natural Science Foundation of China(No.51971149).
文摘As one of the most important forming technologies for industrial bulk metallic glass (BMG) parts withcomplex shapes, high-pressure die casting (HPDC) can fill a die cavity with a glass-forming metallic liquidin milliseconds. However, to our knowledge, the correlation between flow and crystallization behavior inthe HPDC process has never been established. In this study, we report on the solidification behavior ofZr_(55)Cu_(30)Ni_(5)Al_(10) glass forming liquid under various flow rates. Surprisingly, the resulting alloys display adecreasing content of amorphous phase with increase of flow rate, i.e. increase of cooling rate, suggestingthat crystallization kinetics of glass-forming metallic liquids in the HPDC process is strongly dependenton the flow field. Analysis reveals that the accelerated crystallization behavior is mainly ascribed to therapid increase in viscosity with a decreasing temperature as well as to the huge shear effect in the glassforming liquid at the end stage of the filling process when the temperature is close to the glass-transitionpoint;this results in a transition from diffusion- to advection-dominated transport. The current investigation suggests that flow-related crystallization must be considered to assess the intrinsic glass-formingability of BMGs produced via HPDC. The obtained results will not only improve the understanding ofcrystallization dynamics but also promote the high-quality production and large-scale application of BMGparts.