Introduction: Diarrheagenic Escherichia coli (DEC) is a relevant cause of diarrhea, particularly among infants and young children in developing countries. Methodology: We compared the frequency, antimicrobial resistan...Introduction: Diarrheagenic Escherichia coli (DEC) is a relevant cause of diarrhea, particularly among infants and young children in developing countries. Methodology: We compared the frequency, antimicrobial resistance, adherence, enterovirulence and genetic diversity of DEC isolates from Guarani indigenous population under five living in distinct villages in Brazil. Results: Of the 314 E. coli isolates from 57 children, with and without diarrhea, 15% (48/314) were classified in DEC categories: aEPEC (56%, 27/48), EAEC (35%, 17/48) and ETEC (8%, 4/48). ETEC belonged to plylogroup A, EAEC to groups A, B1, B2 and D, and aEPEC to phylogroups A, B1, and B2. EAEC exhibited the aggregative adherence phenotype while ETEC and aEPEC the aggregative and undefined patterns. Multidrug-resistance was detected in aEPEC, ETEC and EAEC while extensive drug-resistance was found in EAEC and aEPEC. RAPD typing revealed a genetically diverse bacterial population. Conclusion: This is the first report regarding aspects of DEC in an indigenous Brazilian population, showing that Guarani children are DEC carriers and that antimicrobial resistance at high levels is widely disseminated among these enteropathogens.展开更多
Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacita...Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.展开更多
文摘Introduction: Diarrheagenic Escherichia coli (DEC) is a relevant cause of diarrhea, particularly among infants and young children in developing countries. Methodology: We compared the frequency, antimicrobial resistance, adherence, enterovirulence and genetic diversity of DEC isolates from Guarani indigenous population under five living in distinct villages in Brazil. Results: Of the 314 E. coli isolates from 57 children, with and without diarrhea, 15% (48/314) were classified in DEC categories: aEPEC (56%, 27/48), EAEC (35%, 17/48) and ETEC (8%, 4/48). ETEC belonged to plylogroup A, EAEC to groups A, B1, B2 and D, and aEPEC to phylogroups A, B1, and B2. EAEC exhibited the aggregative adherence phenotype while ETEC and aEPEC the aggregative and undefined patterns. Multidrug-resistance was detected in aEPEC, ETEC and EAEC while extensive drug-resistance was found in EAEC and aEPEC. RAPD typing revealed a genetically diverse bacterial population. Conclusion: This is the first report regarding aspects of DEC in an indigenous Brazilian population, showing that Guarani children are DEC carriers and that antimicrobial resistance at high levels is widely disseminated among these enteropathogens.
基金the Brazilian Federal Agency for Support and Evaluation of Graduate Education(CAPES)the Brazilian National Council for Scientific and Technological Development(CNPq,306239/2019-1)for their financial support。
文摘Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.