期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于协同梯度下降的可信学习方法 被引量:1
1
作者 张宝昌 鲍宇翔 +2 位作者 王润琪 吕金虎 刘克新 《中国科学:技术科学》 EI CSCD 北大核心 2024年第2期257-264,共8页
人工智能使人类改造自然、适应自然的各类技术发展到更高阶段,是人类社会发展过程中的一次重要革命.深度学习不可解释性难题是当前人工智能领域的瓶颈问题.基于深度模型的推理过程是一个黑箱,现有的理论还不能完全解释模型输出结果的原... 人工智能使人类改造自然、适应自然的各类技术发展到更高阶段,是人类社会发展过程中的一次重要革命.深度学习不可解释性难题是当前人工智能领域的瓶颈问题.基于深度模型的推理过程是一个黑箱,现有的理论还不能完全解释模型输出结果的原因,对它的研究还处于比较初级的阶段.针对双线性模型的不可解释问题,我们提出了基于协同梯度下降算法的可信学习方法,在模型优化过程中引入反馈机制实现模型解耦,构建了可信的因果模型,提升了模型的性能和可解释性.在卷积神经网络训练以及模型压缩的任务中,实验结果表明该方法的有效性和适用性. 展开更多
关键词 可信学习 双线性优化 因果关系 协同梯度下降 解耦
原文传递
面向近期量子处理器的量子神经网络研究进展 被引量:3
2
作者 吕颜轩 高庆 +2 位作者 吕金虎 潘宇 董道毅 《中国科学:技术科学》 EI CSCD 北大核心 2022年第4期547-564,共18页
近年来,人工神经网络在各领域得到了广泛的应用,展现出强大的计算智能.与此同时,量子计算硬件也得到了飞速发展,近期量子处理器已具备较稳定的计算能力和抑制退相干能力,多家商用云量子计算机公司已能够为世界各地的学者们提供在线量子... 近年来,人工神经网络在各领域得到了广泛的应用,展现出强大的计算智能.与此同时,量子计算硬件也得到了飞速发展,近期量子处理器已具备较稳定的计算能力和抑制退相干能力,多家商用云量子计算机公司已能够为世界各地的学者们提供在线量子计算实验平台.在诸多技术领域的迅猛进展下,量子神经网络这一交叉领域也重获科学界的关注,涌现出了大量新的研究思路并取得了重要的实验进展.本文首先对早期量子神经网络的研究思路作简要阐述,然后对基于近期量子处理器的量子神经网络的数据编码、算法流程和量子电路设计等进行综述分析,最后总结量子神经网络领域的数个关键科学问题,对未来研究方向做出展望. 展开更多
关键词 人工智能 量子神经网络 近期量子处理器
原文传递
Neural-network-based fully distributed formation control for nonlinear multi-agent systems with event-triggered communication 被引量:1
3
作者 ZHU Guoliang lIU KeXin +1 位作者 GU HaiBo lüjinhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期209-220,共12页
This paper investigates the consensus-based formation control problem for multi-agent systems with unknown nonlinear dynamics.To achieve the desired formation,we propose two formation controllers to achieve the desire... This paper investigates the consensus-based formation control problem for multi-agent systems with unknown nonlinear dynamics.To achieve the desired formation,we propose two formation controllers to achieve the desired formation,one based on system states and the other on system outputs.The proposed controllers utilize adaptive gains to avoid global information and neural networks to estimate and compensate for nonlinearities.The proposed event-triggered schemes avoid continuous communication among agents and exclude the Zeno behavior.Stability analysis reveals that formation errors are bounded,and numerical simulations are used to validate the effectiveness of the proposed approaches. 展开更多
关键词 formation control neural network adaptive control event-triggered communication multi-agent systems
原文传递
Stability and performance analysis of the compressed Kalman filter algorithm for sparse stochastic systems
4
作者 lI RongJiang GAN Die +1 位作者 XIE SiYu lüjinhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第2期380-394,共15页
This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propos... This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propose a compressed Kalman filter(KF)algorithm.Our algorithm first compresses the original high-dimensional sparse regression vector via the sensing matrix and then obtains a KF estimate in the compressed low-dimensional space.Subsequently,the original high-dimensional sparse signals can be well recovered by a reconstruction technique.To ensure stability and establish upper bounds on the estimation errors,we introduce a compressed excitation condition without imposing independence or stationarity on the system signal,and therefore suitable for feedback systems.We further present the performance of the compressed KF algorithm.Specifically,we show that the mean square compressed tracking error matrix can be approximately calculated by a linear deterministic difference matrix equation,which can be readily evaluated,analyzed,and optimized.Finally,a numerical example demonstrates that our algorithm outperforms the standard uncompressed KF algorithm and other compressed algorithms for estimating high-dimensional sparse signals. 展开更多
关键词 sparse signal compressed sensing Kalman filter algorithm compressed excitation condition stochastic stability tracking performance
原文传递
Distributed swarm control for multi-robot systems inspired by shepherding behaviors
5
作者 SUN GuiBin GU HaiBo lüjinhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期2191-2202,共12页
Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and sta... Swarming behaviors play an eminent role in both biological and engineering research, and show great potential applications in many emerging fields. Traditional swarming models still lack integrity, uniformity, and stability in swarm forming processes,resulting in fragmentation and void phenomena. Inspired by the shepherding behaviors observed in nature, we propose an integrated negotiation-control scheme for distributed swarm control of massive robots. The core idea of this scheme is that the robots at the boundary of the group herd the internal robots to form an equilibrium swarm. For this purpose, we introduce a concept of virtual group center towards which boundary robots herd internal robots. Then, a distributed negotiation mechanism is designed to allow each robot to negotiate the virtual group center only through local interactions with its neighbors. After that, we propose a shepherding-inspired swarm control law to drive a group of robots to form an integrated, uniform, and stable configuration from any initial states. Both numerical and flight simulations are presented to verify the effectiveness of our proposed swarm control scheme. 展开更多
关键词 swarm control multi-robot system negotiation-control scheme shepherding behavior
原文传递
Improving the initialization speed for long-range NRTK in network solution mode
6
作者 ZHANG Ming lüjinhu +2 位作者 BAI ZhengDong lIU Hui FAN ChengCheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第5期866-873,共8页
Initialization speed is one of the most important factors in network real time kinematic(NRTK)performance.Owing to the low correlation among the error sources of reference stations,it is difficult to fix reference sta... Initialization speed is one of the most important factors in network real time kinematic(NRTK)performance.Owing to the low correlation among the error sources of reference stations,it is difficult to fix reference station ambiguities of long-range NRTK quickly.In traditional reference stations ambiguity resolution(AR)methods,baselines are usually solved independently which is called baseline solution(BS)mode in this study.Because the correlations among baselines are not taken into consideration in ambiguities estimation,the AR speed is slow.Generally,tens of minutes or longer time is required to initialize.We propose a network solution(NS)mode approach,in which the correlations among the double-difference ambiguities(DDAs)as well as double-difference ionospheric delays(DDIDs)of different baselines are considered in estimating float ambiguity solutions.Experimental results show that the float ambiguity solutions obtained are more accurate with an improved consistency.Thus,initialization speed is significantly increased by 18%in NS mode. 展开更多
关键词 initialization speed network real time kinematic(NRTK) reference station ambiguity resolution(AR) network solution(NS)mode baseline solution(BS)mode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部