We investigated the mechanical and microstructural responses of a high-strength equal-molar medium entropy FeCrNi alloy at 293 and 15 K by in situ neutron diffraction testing.At 293 K,the alloy had a very high yield s...We investigated the mechanical and microstructural responses of a high-strength equal-molar medium entropy FeCrNi alloy at 293 and 15 K by in situ neutron diffraction testing.At 293 K,the alloy had a very high yield strength of 651±12 MPa,with a total elongation of 48%±5%.At 15 K,the yield strength increased to 1092±22 MPa,but the total elongation dropped to 18%±1%.Via analyzing the neutron diffraction data,we determined the lattice strain evolution,single-crystal elastic constants,stacking fault probability,and estimated stacking fault energy of the alloy at both temperatures,which are the critical parameters to feed into and compare against our first-principles calculations and dislocation-based slip system modeling.The density functional theory calculations show that the alloy tends to form shortrange order at room temperatures.However,atom probe tomography and atomic-resolution transmission electron microscopy did not clearly identify the short-range order.Additionally,at 293 K,experimental measured single-crystal elastic constants did not agree with those determined by first-principles calculations with short-range order but agreed well with the values from the calculation with the disordered configuration at 2000 K.This suggests that the alloy is at a metastable state resulted from the fabrication methods.In view of the high yield strength of the alloy,we calculated the strengthening contribution to the yield strength from grain boundaries,dislocations,and lattice distortion.The lattice distortion contribution was based on the Varenne-Luque-Curtine strengthening theory for multi-component alloys,which was found to be 316 MPa at 293 K and increased to 629 MPa at 15 K,making a significant contribution to the high yield strength.Regarding plastic deformation,dislocation movement and multiplication were found to be the dominant hardening mechanism at both temperatures,whereas twinning and phase transformation were not prevalent.This is mainly due to the high stacking fault energy of the alloy as estimated t展开更多
Anthropogenic organics are known to be responsible for the formation of harmful disinfection byproducts (DBPs) in swimming pool water (SPW). The research explored an important scenario of SPW with no additional anthro...Anthropogenic organics are known to be responsible for the formation of harmful disinfection byproducts (DBPs) in swimming pool water (SPW). The research explored an important scenario of SPW with no additional anthropogenic organic input. With stimulations by residual chlorine or additional chlorine and extended incubation, the formation of DBPs, especially chlorofonn, was significantly induced. Similar observations were found by investigating synthetic SPW made with sweat and urine. The presence of urine led to a massive fbmiation of chloroform, as noted by an approximate 19-fbld increase after 165-day incubation with a shock chlorine dose. The research suggests that consistent residual chlorine and long water retention as two typical features of SPW could unlock the DBP fbnnation potential of anthropogenic organics. Thus, limiting the introduction of anthropogenic organics may not have an immediate effect on reducing DBP levels, because their reactions with chlorine can be slow and long-lasting. Pool management should prioritize on control of urine and improving air ventilation. This work is useful to deepen understandings about DBP formation in SPW and provide implications for pool management and prospective legislation.展开更多
Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The m...Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.展开更多
在现有原卟啉原氧化酶抑制剂构效关系基础上,设计了一类结构新颖的3-芳基哒嗪酮类化合物,并探索了该类化合物的合成方法,合成了9个3-芳基哒嗪酮类化合物,并用于开展室内除草活性测定和作物安全性评价.结果表明3-芳基哒嗪酮类化合物具有...在现有原卟啉原氧化酶抑制剂构效关系基础上,设计了一类结构新颖的3-芳基哒嗪酮类化合物,并探索了该类化合物的合成方法,合成了9个3-芳基哒嗪酮类化合物,并用于开展室内除草活性测定和作物安全性评价.结果表明3-芳基哒嗪酮类化合物具有较高的芽前、芽后除草活性和作物安全性.对高活性化合物3-[2,4-二氯-5-(环戊氧基)苯基]-1-甲基-6-(三氟甲基)哒嗪-4(1H)-酮(Ie)进行了苗后玉米田间小区药效验证试验,结果表明化合物Ie在60 g a.i./hm2剂量下的总草防效略高于105 g a.i./ha用量的硝磺草酮,且对苗后玉米安全.展开更多
基金supported by the City U grant 9360161 and RGC grant 25202719funding from the Euratom research and training programs 2014–2018 and 2019–2020 under Grant Agreement No.633053+4 种基金the RCUK Energy Programme[Grant No.EP/T012250/1]funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement No.714697)support from high-performing computing facility MARCONI(Bologna,Italy)provided by EUROfusiona part of an international project co-financed from the funds of the program of the Polish Minister of Science and Higher Education entitled"PMW"in 2019,Agreement No.5018/H2020-Euratom/2019/2support of the Interdisciplinary center for Mathematical and Computational Modeling(ICM),University of Warsaw,under grant No.GB79–6。
文摘We investigated the mechanical and microstructural responses of a high-strength equal-molar medium entropy FeCrNi alloy at 293 and 15 K by in situ neutron diffraction testing.At 293 K,the alloy had a very high yield strength of 651±12 MPa,with a total elongation of 48%±5%.At 15 K,the yield strength increased to 1092±22 MPa,but the total elongation dropped to 18%±1%.Via analyzing the neutron diffraction data,we determined the lattice strain evolution,single-crystal elastic constants,stacking fault probability,and estimated stacking fault energy of the alloy at both temperatures,which are the critical parameters to feed into and compare against our first-principles calculations and dislocation-based slip system modeling.The density functional theory calculations show that the alloy tends to form shortrange order at room temperatures.However,atom probe tomography and atomic-resolution transmission electron microscopy did not clearly identify the short-range order.Additionally,at 293 K,experimental measured single-crystal elastic constants did not agree with those determined by first-principles calculations with short-range order but agreed well with the values from the calculation with the disordered configuration at 2000 K.This suggests that the alloy is at a metastable state resulted from the fabrication methods.In view of the high yield strength of the alloy,we calculated the strengthening contribution to the yield strength from grain boundaries,dislocations,and lattice distortion.The lattice distortion contribution was based on the Varenne-Luque-Curtine strengthening theory for multi-component alloys,which was found to be 316 MPa at 293 K and increased to 629 MPa at 15 K,making a significant contribution to the high yield strength.Regarding plastic deformation,dislocation movement and multiplication were found to be the dominant hardening mechanism at both temperatures,whereas twinning and phase transformation were not prevalent.This is mainly due to the high stacking fault energy of the alloy as estimated t
文摘Anthropogenic organics are known to be responsible for the formation of harmful disinfection byproducts (DBPs) in swimming pool water (SPW). The research explored an important scenario of SPW with no additional anthropogenic organic input. With stimulations by residual chlorine or additional chlorine and extended incubation, the formation of DBPs, especially chlorofonn, was significantly induced. Similar observations were found by investigating synthetic SPW made with sweat and urine. The presence of urine led to a massive fbmiation of chloroform, as noted by an approximate 19-fbld increase after 165-day incubation with a shock chlorine dose. The research suggests that consistent residual chlorine and long water retention as two typical features of SPW could unlock the DBP fbnnation potential of anthropogenic organics. Thus, limiting the introduction of anthropogenic organics may not have an immediate effect on reducing DBP levels, because their reactions with chlorine can be slow and long-lasting. Pool management should prioritize on control of urine and improving air ventilation. This work is useful to deepen understandings about DBP formation in SPW and provide implications for pool management and prospective legislation.
基金supported by the National Natural Science Foundation of China (Grand No. 50872032)the financial support from the Hundred Talents Program of the Chinese Academy of Sciencesthe National Basic Research Program of China(Grant No. 2010CB631006)
文摘Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.
文摘在现有原卟啉原氧化酶抑制剂构效关系基础上,设计了一类结构新颖的3-芳基哒嗪酮类化合物,并探索了该类化合物的合成方法,合成了9个3-芳基哒嗪酮类化合物,并用于开展室内除草活性测定和作物安全性评价.结果表明3-芳基哒嗪酮类化合物具有较高的芽前、芽后除草活性和作物安全性.对高活性化合物3-[2,4-二氯-5-(环戊氧基)苯基]-1-甲基-6-(三氟甲基)哒嗪-4(1H)-酮(Ie)进行了苗后玉米田间小区药效验证试验,结果表明化合物Ie在60 g a.i./hm2剂量下的总草防效略高于105 g a.i./ha用量的硝磺草酮,且对苗后玉米安全.