Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especial...Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especially after decades of fertilization. Here, we assess the contribution of the soil functionalities of carbon(C), nitrogen(N), and phosphorus(P) cycling to crop production and explore how soil organisms control these functionalities in a 33-year field fertilization experiment. The long-term application of green manure or cow manure produced wheat yields equivalent to those obtained with chemical N, with the former providing higher soil functions and allowing the functionality of N cycling(especially soil N mineralization and biological N fixation) to control wheat production. The keystone phylotypes within the global network rather than the overall microbial community dominated the soil multifunctionality and functionality of C,N, and P cycling across the soil profile(0–100 cm). We further confirmed that these keystone phylotypes consisted of many metabolic pathways of nutrient cycling and essential microbes involved in organic C mineralization, N_(2)O release, and biological N fixation. The chemical N, green manure, and cow manure resulted in the highest abundances of amoB, nifH, and GH48 genes and Nitrosomonadaceae,Azospirillaceae, and Sphingomonadaceae within the keystone phylotypes, and these microbes were significantly and positively correlated with N_(2)O release, N fixation, and organic C mineralization, respectively. Moreover, our results demonstrated that organic fertilization increased the effects of the network size and keystone phylotypes on the subsoil functions by facilitating the migration of soil microorganisms across the soil profiles and green manure with the highest migration rates. This study highlights the importance of the functionality of N cycling in controlling crop production and keystone phylotypes in regulating soil functions, and provides selectable fertilization strategies展开更多
Pod size is a key agronomic trait that influences peanut yield greatly.However,our understanding of the mechanisms underlying pod size is limited.In this study,we employed a segregating population derived from a cross...Pod size is a key agronomic trait that influences peanut yield greatly.However,our understanding of the mechanisms underlying pod size is limited.In this study,we employed a segregating population derived from a cross between the small-pod line ND_S and the large-pod line ND_L to map quantitative trait loci(QTL)associated with pod size.Initial mapping performed using bulk segregant analysis revealed a candidate interval on chromosome A05 referred to as qPSW05.We refined this interval to a 256.9 kb genomic region using newly developed molecular markers.Through sequence and expression analyses,we identified the candidate gene AhXE45GC,which encodes an AN1 zinc finger protein.We discovered a 33-bp insertion in the intron of AhXE45GC in ND_S.Accessions that lack this insertion,such as ND_L,had significantly larger pods than those with the insertion,including ND_S.To facilitate marker-assisted selection for peanut pod size,we developed a molecular marker associated with this polymorphism.This marker could provide a valuable genetic resource for breeding high-yielding peanut varieties.展开更多
Additive manufacturing technology,by manipulating and emulating inherent multiscale,multi-material,and multifunctional structures found in nature,has created new opportunities for constructing heterogeneous structures...Additive manufacturing technology,by manipulating and emulating inherent multiscale,multi-material,and multifunctional structures found in nature,has created new opportunities for constructing heterogeneous structures associated with special properties and achieving ultra-high mechanical performance and reliability in ceramic composite materials.In this study,we have developed an innovative fabrication method designated as coaxial 3D printing for the synchronous construction of two constituents into ceramic composites with a tooth enamel biomimetic microstructure.Herein,the stiff silicate and flexible epoxy served as a strengthening bridge and toughening layer,respectively.The method differed from the traditional approach of randomly dispersing reinforcing components within a ceramic matrix.It allowed for the direct creation of an internally effective three-dimensional reinforcement network structure in ceramic composites.This process facilitated synergistic deformation and simultaneous enhancement of multiple materials and hierarchical structures.Owing to the uniform distribution of internal stress and effective block of microcrack propagation,the biomimetically structured silicate/epoxy ceramic composite has demonstrated much significant enhancement in mechanical properties,includingcompressive strength(48.8±3.12MPa),flexuralstrength(10.39±1.23MPa),andflexuraltoughness(218.7±54.6kJ/m^(3)),which was 0.5,2.1,and 47.5 times as high as those of the intrinsic brittle silicate ceramics,respectively.In-situ characterization and multiscale finite element simulation of microstructural evolution during three-point bending deformation further validated multiple-step features of the fracture process(silicate bridge fracture,interface detachment,epoxy extraction,and rupture),which benefited from interpenetrating structural features achieved by coaxial printing to accomplish with the complex propagating routines of the crack deflection in silicate ceramic composites.This coaxial 3D printing method paves the way for tailor展开更多
The self-weight of solid waste or machine-rolled compaction can induce or trigger contaminant migration in the landfill.Although the consolidation-induced hydraulic gradient driving solution transport has been extensi...The self-weight of solid waste or machine-rolled compaction can induce or trigger contaminant migration in the landfill.Although the consolidation-induced hydraulic gradient driving solution transport has been extensively investigated,little attention has been paid to ion migration caused by its concentration gradient variation.It is necessary to more precisely predict the multi-stage contaminant transports in deforming porous material.Based on the modified Cam-clay model,the proposed fluid-solid coupled model can simulate the elastoplastic deformation behavior of layered kaolinite and KBr solution transport/sorption,and its modeling results were validated by published laboratory data.The solid-fluid interactions were analyzed by comparing various transport manners of K^(+)and Br^(−)from excess pore pressure generation to dissipation.Results reveal that the consolidation process can accelerate KBr solute advection from the contaminated layer into the uncontaminated layer,and then affects the subsequent diffusion,mechanical dispersion and sorption for K^(+)and Br^(−).The simulations also indicate that consolidation-induced solute transport is time-dependent,and therefore the ion diffusion and mechanical dispersion should receive more attention.展开更多
基金supported by the National Key Research and Development Program of China(2021YFD1700200)the earmarked fund for CARS-Green manure(CARS-22)the Agricultural Science and Technology Innovation Program of CAAS。
文摘Fertilizers are widely used to produce more food, inevitably altering the diversity and composition of soil organisms. The role of soil biodiversity in controlling multiple ecosystem services remains unclear, especially after decades of fertilization. Here, we assess the contribution of the soil functionalities of carbon(C), nitrogen(N), and phosphorus(P) cycling to crop production and explore how soil organisms control these functionalities in a 33-year field fertilization experiment. The long-term application of green manure or cow manure produced wheat yields equivalent to those obtained with chemical N, with the former providing higher soil functions and allowing the functionality of N cycling(especially soil N mineralization and biological N fixation) to control wheat production. The keystone phylotypes within the global network rather than the overall microbial community dominated the soil multifunctionality and functionality of C,N, and P cycling across the soil profile(0–100 cm). We further confirmed that these keystone phylotypes consisted of many metabolic pathways of nutrient cycling and essential microbes involved in organic C mineralization, N_(2)O release, and biological N fixation. The chemical N, green manure, and cow manure resulted in the highest abundances of amoB, nifH, and GH48 genes and Nitrosomonadaceae,Azospirillaceae, and Sphingomonadaceae within the keystone phylotypes, and these microbes were significantly and positively correlated with N_(2)O release, N fixation, and organic C mineralization, respectively. Moreover, our results demonstrated that organic fertilization increased the effects of the network size and keystone phylotypes on the subsoil functions by facilitating the migration of soil microorganisms across the soil profiles and green manure with the highest migration rates. This study highlights the importance of the functionality of N cycling in controlling crop production and keystone phylotypes in regulating soil functions, and provides selectable fertilization strategies
基金supported by the Key Program of National Natural Science Foundation of China (NSFC)-Henan United Fund (U22A20475)Key Scientific and Technological Project of Henan Province (221111110500,222301420026,HARS-22-05-G1).
文摘Pod size is a key agronomic trait that influences peanut yield greatly.However,our understanding of the mechanisms underlying pod size is limited.In this study,we employed a segregating population derived from a cross between the small-pod line ND_S and the large-pod line ND_L to map quantitative trait loci(QTL)associated with pod size.Initial mapping performed using bulk segregant analysis revealed a candidate interval on chromosome A05 referred to as qPSW05.We refined this interval to a 256.9 kb genomic region using newly developed molecular markers.Through sequence and expression analyses,we identified the candidate gene AhXE45GC,which encodes an AN1 zinc finger protein.We discovered a 33-bp insertion in the intron of AhXE45GC in ND_S.Accessions that lack this insertion,such as ND_L,had significantly larger pods than those with the insertion,including ND_S.To facilitate marker-assisted selection for peanut pod size,we developed a molecular marker associated with this polymorphism.This marker could provide a valuable genetic resource for breeding high-yielding peanut varieties.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470303)the Fund of Natural Science Foundation of China(No.52073132)the Fundamental Research Funds for the Central Universities(Nos.zujbky-2022-ey02 and Izujbky-2023-eyt03).
文摘Additive manufacturing technology,by manipulating and emulating inherent multiscale,multi-material,and multifunctional structures found in nature,has created new opportunities for constructing heterogeneous structures associated with special properties and achieving ultra-high mechanical performance and reliability in ceramic composite materials.In this study,we have developed an innovative fabrication method designated as coaxial 3D printing for the synchronous construction of two constituents into ceramic composites with a tooth enamel biomimetic microstructure.Herein,the stiff silicate and flexible epoxy served as a strengthening bridge and toughening layer,respectively.The method differed from the traditional approach of randomly dispersing reinforcing components within a ceramic matrix.It allowed for the direct creation of an internally effective three-dimensional reinforcement network structure in ceramic composites.This process facilitated synergistic deformation and simultaneous enhancement of multiple materials and hierarchical structures.Owing to the uniform distribution of internal stress and effective block of microcrack propagation,the biomimetically structured silicate/epoxy ceramic composite has demonstrated much significant enhancement in mechanical properties,includingcompressive strength(48.8±3.12MPa),flexuralstrength(10.39±1.23MPa),andflexuraltoughness(218.7±54.6kJ/m^(3)),which was 0.5,2.1,and 47.5 times as high as those of the intrinsic brittle silicate ceramics,respectively.In-situ characterization and multiscale finite element simulation of microstructural evolution during three-point bending deformation further validated multiple-step features of the fracture process(silicate bridge fracture,interface detachment,epoxy extraction,and rupture),which benefited from interpenetrating structural features achieved by coaxial printing to accomplish with the complex propagating routines of the crack deflection in silicate ceramic composites.This coaxial 3D printing method paves the way for tailor
基金The financial support of the National Natural Science Foundation of China (Grant No. 41772154)Natural Science Foundation of Shandong Province (ZR2019MA009)Science and Technology Project of Qingdao West Coast New Area (2019-47)
文摘The self-weight of solid waste or machine-rolled compaction can induce or trigger contaminant migration in the landfill.Although the consolidation-induced hydraulic gradient driving solution transport has been extensively investigated,little attention has been paid to ion migration caused by its concentration gradient variation.It is necessary to more precisely predict the multi-stage contaminant transports in deforming porous material.Based on the modified Cam-clay model,the proposed fluid-solid coupled model can simulate the elastoplastic deformation behavior of layered kaolinite and KBr solution transport/sorption,and its modeling results were validated by published laboratory data.The solid-fluid interactions were analyzed by comparing various transport manners of K^(+)and Br^(−)from excess pore pressure generation to dissipation.Results reveal that the consolidation process can accelerate KBr solute advection from the contaminated layer into the uncontaminated layer,and then affects the subsequent diffusion,mechanical dispersion and sorption for K^(+)and Br^(−).The simulations also indicate that consolidation-induced solute transport is time-dependent,and therefore the ion diffusion and mechanical dispersion should receive more attention.