This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs(o-GNPs/PLA) via fused deposition modeling(FDM) 3 D printing technology.Further c...This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs(o-GNPs/PLA) via fused deposition modeling(FDM) 3 D printing technology.Further combinations of o-GNPs/PLA with Ti_(3) C_(2) T_(x) films prepared by vacuum-assisted filtration were carried out by "layer-by-layer stacking-hot pressing" to be the thermally conductive Ti_(3) C_(2) T_(x)/(oGNPs/PLA) composites with superior electromagnetic interference shielding effectiveness(EMI SE).When the content of GNPs was 18.60 wt%and 4 layers of Ti_(3) C_(2) T_(x)(6.98 wt%) films were embedded,the in-plane thermal conductivity coefficient(λ_(Ⅱ)) and EMI SE(EMI SE_(Ⅱ)) values of the thermally conductive Ti_(3) C_(2) T_(x)/(o-GNPs/P LA) composites significantly increa sed to 3.44 W·m^(-1)·K^(-1) and 65 d B(3.00 mm),increased by 1223.1% and2066.7%,respectively,compared with λ_(Ⅱ)(0.26 W·m^(-1)·K^(-1)) and EMI SE_(Ⅱ)(3 d B) of neat PLA matrix.This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application.展开更多
Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combin...Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combined to prepare“Line-Plane”-like hetero-structured thermally conductive GO@f-CNTs fillers,which are then performed to construct controllable 3D GO@f-CNTs thermal conduction networks via selfsacrificing template method based on oxalic acid.Subsequently,thermally conductive GO@f-CNTs/polydimethylsiloxane(PDMS)composites are fabricated via casting method.When the size of oxalic acid is 0.24 mm and the volume fraction of GO@f-CNTs is 60 vol%,GO@f-CNTs/PDMS composites present the optimal thermal conductivity coefficient(λ,4.00 W·m^(-1)·K^(-1)),about 20 times that of theλof neat PDMS(0.20 W·m^(-1)·K^(-1)),also much higher than theλ(2.44 W·m^(-1)·K^(-1))of GO/f-CNTs/PDMS composites with the same amount of randomly dispersed fillers.Meanwhile,the obtained GO@f-CNTs/PDMS composites have excellent thermal stability,whoseλdeviation is only about 3%after 500 thermal cycles(20-200℃).展开更多
基金financial support from the National Natural Science Foundation of China (Nos. 51773169 and 51973173)Technical Basis Scientific Research Project (Highly Thermally Conductive Non-metal Materials)+2 种基金Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120093)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2019JC-11)financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。
文摘This work proposes a facile fabrication strategy for thermally conductive graphite nanosheets/poly(lactic acid) sheets with ordered GNPs(o-GNPs/PLA) via fused deposition modeling(FDM) 3 D printing technology.Further combinations of o-GNPs/PLA with Ti_(3) C_(2) T_(x) films prepared by vacuum-assisted filtration were carried out by "layer-by-layer stacking-hot pressing" to be the thermally conductive Ti_(3) C_(2) T_(x)/(oGNPs/PLA) composites with superior electromagnetic interference shielding effectiveness(EMI SE).When the content of GNPs was 18.60 wt%and 4 layers of Ti_(3) C_(2) T_(x)(6.98 wt%) films were embedded,the in-plane thermal conductivity coefficient(λ_(Ⅱ)) and EMI SE(EMI SE_(Ⅱ)) values of the thermally conductive Ti_(3) C_(2) T_(x)/(o-GNPs/P LA) composites significantly increa sed to 3.44 W·m^(-1)·K^(-1) and 65 d B(3.00 mm),increased by 1223.1% and2066.7%,respectively,compared with λ_(Ⅱ)(0.26 W·m^(-1)·K^(-1)) and EMI SE_(Ⅱ)(3 d B) of neat PLA matrix.This work offers a novel and easily route for designing and manufacturing highly thermally conductive polymer composites with superior EMI SE for broader application.
基金financially supported by the National Natural Science Foundation of China(No.51973173)Technological Base Scientific Research Projects(Highly Thermally Conductive Nonmetal Materials)+3 种基金Natural Science Foundation of Chongqing,China(No.2023NSCQ-MSX2547)Shaanxi Province Key Research and Development Plan Project(No.2023-YBGY-461)Fundamental Research Funds for the Central Universities,the Innovation Capability Support Program of Shaanxi(No.2024RS-CXTD-57)financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。
文摘Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites.In this work,graphite oxide(GO)and functionalized carbon nanotubes(f-CNTs)are combined to prepare“Line-Plane”-like hetero-structured thermally conductive GO@f-CNTs fillers,which are then performed to construct controllable 3D GO@f-CNTs thermal conduction networks via selfsacrificing template method based on oxalic acid.Subsequently,thermally conductive GO@f-CNTs/polydimethylsiloxane(PDMS)composites are fabricated via casting method.When the size of oxalic acid is 0.24 mm and the volume fraction of GO@f-CNTs is 60 vol%,GO@f-CNTs/PDMS composites present the optimal thermal conductivity coefficient(λ,4.00 W·m^(-1)·K^(-1)),about 20 times that of theλof neat PDMS(0.20 W·m^(-1)·K^(-1)),also much higher than theλ(2.44 W·m^(-1)·K^(-1))of GO/f-CNTs/PDMS composites with the same amount of randomly dispersed fillers.Meanwhile,the obtained GO@f-CNTs/PDMS composites have excellent thermal stability,whoseλdeviation is only about 3%after 500 thermal cycles(20-200℃).