All-fiber few-mode erbium-doped fiber amplifiers(FM-EDFAs) with isolation and wavelength division multiplexers(IWDMs)have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >...All-fiber few-mode erbium-doped fiber amplifiers(FM-EDFAs) with isolation and wavelength division multiplexers(IWDMs)have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >30 d B modal gain with<0.3 d B differential modal gain(DMG). We experimentally simulate the DMG performance of a cascade FM-EDFA system using the equivalent spectrum method. The overall DMG reaches 1.84 d B after 10-stage amplification. We also build a recirculating loop to simulate the system, and the developed FM-EDFA can support transmission up to 3270 km within a 2 d B overall DMG by optimizing the few-mode fiber length in the loop.展开更多
We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We ...We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We use an out-ofrange detector to detect the end of burst errors from the DFE and activate the optional TC-MLSE to correct burst errors.We conduct experiments to transmit a 201-Gbit/s PAM-8 signal.The results show that the proposed method achieves a bit error rate of 3.65×10^(-3),which is close to that of MLSE.The optional MLSE is only activated when needed and processes 11.4%of the total symbols.Moreover,the proposed method compresses the maximum length of burst errors from 19 to 5.展开更多
The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%.Here,we exp...The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%.Here,we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength,large mode volume,and high-Q factor,resulting in a low-repetition-rate dissipative soliton(∼21 GHz)with an energy conversion efficiency exceeding 20%.Furthermore,by generating an∼105 GHz 5×FSR(free spectral range)soliton crystal comb in the microcavity,the energy conversion efficiency can be further increased up to 56%.展开更多
基金supported by the National Natural Science Foundation of China (No. 62171078)the National Key R&D Program of China (No. 2018YFB1801003)。
文摘All-fiber few-mode erbium-doped fiber amplifiers(FM-EDFAs) with isolation and wavelength division multiplexers(IWDMs)have been developed to enable flexible pumping in different directions. The FM-EDFA can achieve >30 d B modal gain with<0.3 d B differential modal gain(DMG). We experimentally simulate the DMG performance of a cascade FM-EDFA system using the equivalent spectrum method. The overall DMG reaches 1.84 d B after 10-stage amplification. We also build a recirculating loop to simulate the system, and the developed FM-EDFA can support transmission up to 3270 km within a 2 d B overall DMG by optimizing the few-mode fiber length in the loop.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.62301128,61871082,and 62111530150)the Open Fund of IPOC(BUPT)(No.IPOC2020A011)+1 种基金the STCSM(No.SKLSFO2021-01)the Fundamental Research Funds for the Central Universities(Nos.ZYGX2020ZB043 and ZYGX2019J008).
文摘We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We use an out-ofrange detector to detect the end of burst errors from the DFE and activate the optional TC-MLSE to correct burst errors.We conduct experiments to transmit a 201-Gbit/s PAM-8 signal.The results show that the proposed method achieves a bit error rate of 3.65×10^(-3),which is close to that of MLSE.The optional MLSE is only activated when needed and processes 11.4%of the total symbols.Moreover,the proposed method compresses the maximum length of burst errors from 19 to 5.
基金supported by the National Key Research and Development Program of China(Nos.2019YFB2203103 and 2021YFB-2800602)the National Natural Science Foundation of China(NSFC)(Nos.62001086 and 61705033)+1 种基金the Sichuan Science and Technology Program(No.2021YJ0095)the Fundamental Research Funds for the Central Universities(No.2021J003).
文摘The nonlinear physics dynamics of temporal dissipative solitons in a microcavity hinder them from attaining high power from pump lasers with a typical nonlinear energy conversion efficiency of less than 1%.Here,we experimentally demonstrate a straightforward method for improving the output power of soliton combs using a silica microrod cavity with high coupling strength,large mode volume,and high-Q factor,resulting in a low-repetition-rate dissipative soliton(∼21 GHz)with an energy conversion efficiency exceeding 20%.Furthermore,by generating an∼105 GHz 5×FSR(free spectral range)soliton crystal comb in the microcavity,the energy conversion efficiency can be further increased up to 56%.
基金funded by the National Key Research and Development Program of China(No.2019YFC1803601)the National Natural Science Foundation of China(No.42177392)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0122)。