期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
New Asymptotic Results on Fermat-Wiles Theorem
1
作者 Kimou Kouadio Prosper kouakou kouassi vincent Tanoé François 《Advances in Pure Mathematics》 2024年第6期421-441,共21页
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio... We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp. 展开更多
关键词 Fermat’s Last Theorem Fermat-Wiles Theorem Kimou’s Divisors Diophantine Quotient Diophantine Remainders Balzano Weierstrass Analysis Theorem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部