As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and op...As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and optical properties, the roles of CQDs played in the CQDs-based photocatalytic systems have been found to be diverse with the continuous researches in this regard. Herein, we provide a concise minireview to elaborate the multifarious roles of CQDs in photocatalysis, including photoelectron mediator and acceptor, photosensitizer, photocatalyst, reducing agent for metal salt, enhancing adsorption capacity and spectral converter. In addition, the perspectives on future research trends and challenges are proposed, which are anticipated to stimulate further research into this promising field on designing a variety of efficient CQDs-based photocatalysts for solar energy conversion. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
基金financial support from the key project of the National Natural Science Foundation of China (U1463204)the project of National Natural Science Foundation of China (NSFC) (20903023,21173045)+4 种基金the Award Program for Minjiang Scholar Professorshipthe Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Grant (2012J06003)the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No.2014A05)the 1st Program of Fujian Province for Top Creative Young Talentsthe Program for Returned High-Level Overseas Chinese Scholars of Fujian Province
文摘As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and optical properties, the roles of CQDs played in the CQDs-based photocatalytic systems have been found to be diverse with the continuous researches in this regard. Herein, we provide a concise minireview to elaborate the multifarious roles of CQDs in photocatalysis, including photoelectron mediator and acceptor, photosensitizer, photocatalyst, reducing agent for metal salt, enhancing adsorption capacity and spectral converter. In addition, the perspectives on future research trends and challenges are proposed, which are anticipated to stimulate further research into this promising field on designing a variety of efficient CQDs-based photocatalysts for solar energy conversion. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.