The influence of the chiral mean field on the in-plane flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasi-particle picture...The influence of the chiral mean field on the in-plane flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasi-particle picture including scalar and vector fields is adopted and compared to the standard treatment with a static potential. It is confirmed that a Lorentz force from spatial component of the vector field provides an important contribution to the in-medium kaon dynamics and strongly counterbalances the influence of the vector potential on the in-plane flow. The calculated results show that the new FOPI data can be reasonably described using the Brown & Rho parametrization, which partly takes into account the correction of higher order contributions in the chiral expansion. This indicates that one can abstract the information on the kaon potential in a nuclear medium from the analysis of the in-plane flow.展开更多
文摘The influence of the chiral mean field on the in-plane flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasi-particle picture including scalar and vector fields is adopted and compared to the standard treatment with a static potential. It is confirmed that a Lorentz force from spatial component of the vector field provides an important contribution to the in-medium kaon dynamics and strongly counterbalances the influence of the vector potential on the in-plane flow. The calculated results show that the new FOPI data can be reasonably described using the Brown & Rho parametrization, which partly takes into account the correction of higher order contributions in the chiral expansion. This indicates that one can abstract the information on the kaon potential in a nuclear medium from the analysis of the in-plane flow.