期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography 被引量:1
1
作者 k.saranya k.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 PRIVACY-PRESERVING crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
Early Detection of Heartbeat from Multimodal Data Using RPA Learning with KDNN-SAE
2
作者 A.k.S.saranya T.Jaya 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期545-562,共18页
Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generali... Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147. 展开更多
关键词 Deep neural network krill herd optimization stack auto-encoder adaptive filter enthalpy based empirical mode decomposition robotic process automation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部