Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in sit...Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening.展开更多
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as ful...In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.展开更多
基金the Department of Science & Technology (DST) for their financial support for carrying out this research through Fast Track Scheme (DST Sanction No: SR/FT/ET-005/2008)Technical Education Quality Improvement Programme (TEQIP)
文摘Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening.
基金the Department of Metallurgical and Materials Engineering,National Institute of Technology,Tiruchirapalli for providing the funds and facilities to conduct this research work
文摘In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.