Combined with the use of renewable energy sources for its production,hydrogen represents a possible alternative gas turbine fuel within future low emission power generation.Due to the large difference in the physical ...Combined with the use of renewable energy sources for its production,hydrogen represents a possible alternative gas turbine fuel within future low emission power generation.Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas,well established gas turbine combustion systems cannot be directly applied for dry-low-NO_(x)(DLN)hydrogen combustion.Thus,the development of DLN combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines.The DLN micromix combustion principle for hydrogen fuel has been developed to significantly reduce NO_(x) emissions.This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames.The major advantages of this combustion principle are the inherent safety against flash-back and the low NO_(x) emissions due to a very short residence time of reactants in the flame region of the micro-flames.The micromix combustion technology has been already proven experimentally and numerically for pure hydrogen fuel operation at different energy density levels.The aim of the present study is to apply and compare different combustion models for the characterization of the micromix flame structure,its interaction with the flow field and its NO_(x) emissions.The study reveals great potential for the successful application of numerical flow simulation to predict flame structure and NO_(x) emission level of micromix hydrogen combustion,help understanding the flow phenomena related with the micromixing,reaction zone and NO_(x) formation and support further optimization of the burner performance.展开更多
The dry-low-NO_(x)(DLN)micromix combustion principle is developed for the low emission combustion of hydrogen in an industrial gas turbine APU GTCP 36-300.The further decrease of NO_(x) emissions along a wider operati...The dry-low-NO_(x)(DLN)micromix combustion principle is developed for the low emission combustion of hydrogen in an industrial gas turbine APU GTCP 36-300.The further decrease of NO_(x) emissions along a wider operation range with pure hydrogen supports the introduction of the micromix technology to industrial applications.Experimental and numerical studies show the successful advance of the DLN micromix combustion to extended DLN operation range.The impact of the hydrogen fuel properties on the combustion principle and aerodynamic flame stabilization design laws,flow field,flame structure and emission characteristics is investigated by numerical analysis using an eddy dissipation concept combustion model and validated against experimental results.展开更多
Combined with the use of renewable energy sources for its production,hydrogen represents a possible alternative gas tuibine fuel within future low emission power generation.Due to the large difference in the physical ...Combined with the use of renewable energy sources for its production,hydrogen represents a possible alternative gas tuibine fuel within future low emission power generation.Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas,well established gas tuibine combustion systems cannot be directly applied for dry-low-NO_(x)(DLN)hydrogen combustion.Thus,the development of DLN combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines.The DLN micromix combustion principle for hydrogen fuel has been developed to significantly reduce NO_(x)-emlssions.This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames.The major advantages of this combustion principle are the inherent safety against flash-back and the low NO_(x)-emlssions due to a very short residence time of reactants in the flame region of the micro-flames.The micromix combustion technology has been already proven experimentally and numerically for pure hydrogen fuel operation at different energy density levels.The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NO_(x)emission and to identify the most relevant design parameters,aiming to provide a physical understanding of the micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application.The study reveals great optimization potential of the micromix combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NO_(x)emission.This allows to further increase the energy density of the micromix burners and to integrate this technology in industrial gas turbines.展开更多
It is known that the leading edge has the most critical heat transfer area of a gas turbine blade.The highest heat transfer rates on the airfoil can always be found on the stagnation region of the leading edge.In orde...It is known that the leading edge has the most critical heat transfer area of a gas turbine blade.The highest heat transfer rates on the airfoil can always be found on the stagnation region of the leading edge.In order to further improve the gas turbine thermal efficiency the development of more advanced internal cooling configurations at leading edge is very necessary.As the state of the art leading edge cooling configuration a concave channel with multi inline jets has been widely used in most of the blades.However,this kind of configuration also generates strong spent flow,which shifts the impingement off the stagnation point and weakens the impingement heat transfer.In order to solve this problem a new internal cooling configuration using double swirl chambers in gas turbine leading edge has been developed and introduced in this paper.The double swirl chambers cooling(DSC)technology is introduced by the authors and contributes a significant enhancement of heat transfer due to the generation of two anti-rotated swirls.In DSC-cooling,the reattachment of the swirl flows always occurs in the middle of the chamber,which results in a linear impingement effect.Compared with the reference standard impingement cooling configuration this new cooling system provides a much more uniform heat transfer distribution in the chamber axial direction and also provides a much higher heat transfer rate.In this study,the influences of different geometrical parameters e.g.merging ratio of two cylinder channels,the jet inlet hole configurations and radius of blunt protuberances in DSC have been investigated numerically.The results show that in the DSC cooling system the jet inlet hole configurations have large influences on the thermal performance.The rectangular inlet holes,especially those with higher aspect ratios,show much better heat transfer enhancement than the round inlet holes.However,as the price for it the total pressure drop is increased.Using blunt protuberances instead of sharp edges in the DSC cooling can improve the 展开更多
文摘Combined with the use of renewable energy sources for its production,hydrogen represents a possible alternative gas turbine fuel within future low emission power generation.Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas,well established gas turbine combustion systems cannot be directly applied for dry-low-NO_(x)(DLN)hydrogen combustion.Thus,the development of DLN combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines.The DLN micromix combustion principle for hydrogen fuel has been developed to significantly reduce NO_(x) emissions.This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames.The major advantages of this combustion principle are the inherent safety against flash-back and the low NO_(x) emissions due to a very short residence time of reactants in the flame region of the micro-flames.The micromix combustion technology has been already proven experimentally and numerically for pure hydrogen fuel operation at different energy density levels.The aim of the present study is to apply and compare different combustion models for the characterization of the micromix flame structure,its interaction with the flow field and its NO_(x) emissions.The study reveals great potential for the successful application of numerical flow simulation to predict flame structure and NO_(x) emission level of micromix hydrogen combustion,help understanding the flow phenomena related with the micromixing,reaction zone and NO_(x) formation and support further optimization of the burner performance.
文摘The dry-low-NO_(x)(DLN)micromix combustion principle is developed for the low emission combustion of hydrogen in an industrial gas turbine APU GTCP 36-300.The further decrease of NO_(x) emissions along a wider operation range with pure hydrogen supports the introduction of the micromix technology to industrial applications.Experimental and numerical studies show the successful advance of the DLN micromix combustion to extended DLN operation range.The impact of the hydrogen fuel properties on the combustion principle and aerodynamic flame stabilization design laws,flow field,flame structure and emission characteristics is investigated by numerical analysis using an eddy dissipation concept combustion model and validated against experimental results.
文摘Combined with the use of renewable energy sources for its production,hydrogen represents a possible alternative gas tuibine fuel within future low emission power generation.Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas,well established gas tuibine combustion systems cannot be directly applied for dry-low-NO_(x)(DLN)hydrogen combustion.Thus,the development of DLN combustion technologies is an essential and challenging task for the future of hydrogen fuelled gas turbines.The DLN micromix combustion principle for hydrogen fuel has been developed to significantly reduce NO_(x)-emlssions.This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames.The major advantages of this combustion principle are the inherent safety against flash-back and the low NO_(x)-emlssions due to a very short residence time of reactants in the flame region of the micro-flames.The micromix combustion technology has been already proven experimentally and numerically for pure hydrogen fuel operation at different energy density levels.The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NO_(x)emission and to identify the most relevant design parameters,aiming to provide a physical understanding of the micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application.The study reveals great optimization potential of the micromix combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NO_(x)emission.This allows to further increase the energy density of the micromix burners and to integrate this technology in industrial gas turbines.
文摘It is known that the leading edge has the most critical heat transfer area of a gas turbine blade.The highest heat transfer rates on the airfoil can always be found on the stagnation region of the leading edge.In order to further improve the gas turbine thermal efficiency the development of more advanced internal cooling configurations at leading edge is very necessary.As the state of the art leading edge cooling configuration a concave channel with multi inline jets has been widely used in most of the blades.However,this kind of configuration also generates strong spent flow,which shifts the impingement off the stagnation point and weakens the impingement heat transfer.In order to solve this problem a new internal cooling configuration using double swirl chambers in gas turbine leading edge has been developed and introduced in this paper.The double swirl chambers cooling(DSC)technology is introduced by the authors and contributes a significant enhancement of heat transfer due to the generation of two anti-rotated swirls.In DSC-cooling,the reattachment of the swirl flows always occurs in the middle of the chamber,which results in a linear impingement effect.Compared with the reference standard impingement cooling configuration this new cooling system provides a much more uniform heat transfer distribution in the chamber axial direction and also provides a much higher heat transfer rate.In this study,the influences of different geometrical parameters e.g.merging ratio of two cylinder channels,the jet inlet hole configurations and radius of blunt protuberances in DSC have been investigated numerically.The results show that in the DSC cooling system the jet inlet hole configurations have large influences on the thermal performance.The rectangular inlet holes,especially those with higher aspect ratios,show much better heat transfer enhancement than the round inlet holes.However,as the price for it the total pressure drop is increased.Using blunt protuberances instead of sharp edges in the DSC cooling can improve the