Multiferroic materials are general antiferromagnets with negligibly small net magnetization,which strongly limits their magnetoelectric applications in spintronics.Spin Hall magnetoresistance(SMR)is sensitive to the o...Multiferroic materials are general antiferromagnets with negligibly small net magnetization,which strongly limits their magnetoelectric applications in spintronics.Spin Hall magnetoresistance(SMR)is sensitive to the orientation of the Néel vector,which can be applied for the detection of antiferromagnetic states.Here,we apply SMR on the unique room-temperature antiferromagnetic multiferroic material BiFeO_(3)(BFO).The angular dependence of SMR in a bilayer of epitaxial BFO(001)and heavy metal Pt is studied.By rotating the sample under a magnetic field of 80 kOe in the film plane,the resistance shows the maximum when the field is perpendicular to the current while it shows the minimum when the field is along the current.This can be well explained by the SMR in the bilayer of heavy metal/antiferromagnet with the relative orientation between the Néel vector and current direction.In contrast,the angular dependence of the resistance of Pt directly deposited on a SrTiO_(3)(001)substrate shows a 90°shift with the magnetic field rotating in the film plane,which originates from the Hanle magnetoresistance of Pt.The obtained spin mixing conductance at the Pt/BFO interface clearly confirms the efficient spin transmission.Our results provide a possible solution for applications of antiferromagnetic multiferroic materials in spintronics.展开更多
We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy(PMA)coefficient,magnetic domain structures,and magnetization dynamics of Pt(5 nm)/[Co(t_(Co))/Ni(t_(Ni))]_(5)/Pt(1 nm)...We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy(PMA)coefficient,magnetic domain structures,and magnetization dynamics of Pt(5 nm)/[Co(t_(Co))/Ni(t_(Ni))]_(5)/Pt(1 nm)multilayers by combining the four standard magnetic characterization techniques.The magnetic-related hysteresis loops obtained from the field-dependent magnetization M and anomalous Hall resistivity(AHR)ρxy showed that the two serial multilayers with t_(Co)=0.2 nm and 0.3 nm have the optimum PMA coefficient K_(U) as well as the highest coercivity H_(C) at the Ni thickness t_(Ni)=0.6 nm.Additionally,the magnetic domain structures obtained by magneto-optic Kerr effect(MOKE)microscopy also significantly depend on the thickness and K_(U) of the films.Furthermore,the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to K_(U) and H_(C),indicating that inhomogeneous magnetic properties dominate the linewidth.However,the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and K_(U).Our results could help promote the PMA[Co/Ni]multilayer applications in various spintronic and spin-orbitronic devices.展开更多
基金supported by the National Natural Science Foundation of China(22278056)Liaoning Revitalization Talent Program(XLYC2008032)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403602)the National Natural Science Foundation of China(Grant Nos.51971109 and 52025012)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2242020k30039)the open research fund of Key Laboratory of MEMS of Ministry of Education,Southeast University。
文摘Multiferroic materials are general antiferromagnets with negligibly small net magnetization,which strongly limits their magnetoelectric applications in spintronics.Spin Hall magnetoresistance(SMR)is sensitive to the orientation of the Néel vector,which can be applied for the detection of antiferromagnetic states.Here,we apply SMR on the unique room-temperature antiferromagnetic multiferroic material BiFeO_(3)(BFO).The angular dependence of SMR in a bilayer of epitaxial BFO(001)and heavy metal Pt is studied.By rotating the sample under a magnetic field of 80 kOe in the film plane,the resistance shows the maximum when the field is perpendicular to the current while it shows the minimum when the field is along the current.This can be well explained by the SMR in the bilayer of heavy metal/antiferromagnet with the relative orientation between the Néel vector and current direction.In contrast,the angular dependence of the resistance of Pt directly deposited on a SrTiO_(3)(001)substrate shows a 90°shift with the magnetic field rotating in the film plane,which originates from the Hanle magnetoresistance of Pt.The obtained spin mixing conductance at the Pt/BFO interface clearly confirms the efficient spin transmission.Our results provide a possible solution for applications of antiferromagnetic multiferroic materials in spintronics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11774150,12074178,12004171,12074189,and 51971109)the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province,China (Grant No.BK20170627)+2 种基金the National Key Research and Development Program of China (Grant No.2018YFA0209002)the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnologythe Scientific Foundation of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No.NY220164)。
文摘We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy(PMA)coefficient,magnetic domain structures,and magnetization dynamics of Pt(5 nm)/[Co(t_(Co))/Ni(t_(Ni))]_(5)/Pt(1 nm)multilayers by combining the four standard magnetic characterization techniques.The magnetic-related hysteresis loops obtained from the field-dependent magnetization M and anomalous Hall resistivity(AHR)ρxy showed that the two serial multilayers with t_(Co)=0.2 nm and 0.3 nm have the optimum PMA coefficient K_(U) as well as the highest coercivity H_(C) at the Ni thickness t_(Ni)=0.6 nm.Additionally,the magnetic domain structures obtained by magneto-optic Kerr effect(MOKE)microscopy also significantly depend on the thickness and K_(U) of the films.Furthermore,the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to K_(U) and H_(C),indicating that inhomogeneous magnetic properties dominate the linewidth.However,the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and K_(U).Our results could help promote the PMA[Co/Ni]multilayer applications in various spintronic and spin-orbitronic devices.