We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-xwith angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inver...We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-xwith angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inversion in Fe1+yTexSe1-x,which explains the absence of Majorana zero modes in previous reports for Fe1+yTexSe1-xwith excess Fe. Based on our analysis of different amounts of Te doping and excess Fe, we propose a delicate topological phase in this material. Thanks to this delicate phase, one may be able to tune the topological transition via applying lattice strain or carrier doping.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11888101 and U1832202)the Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH043,XDB28000000,and XDB33000000)+3 种基金the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0102)supported by the Synergetic Extreme Condition User Facility(SECUF)supported by US DOE(Grant Nos.DESC0010526 and DE-SC0012704)。
文摘We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-xwith angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inversion in Fe1+yTexSe1-x,which explains the absence of Majorana zero modes in previous reports for Fe1+yTexSe1-xwith excess Fe. Based on our analysis of different amounts of Te doping and excess Fe, we propose a delicate topological phase in this material. Thanks to this delicate phase, one may be able to tune the topological transition via applying lattice strain or carrier doping.