Solar-blind ultraviolet(UV)photodetectors based on p-organic/n-Ga_(2)O_(3) hybrid heterojunctions have attracted extensive attention recently.Herein,the multifunctional solar-blind photodetector based on p-type poly[N...Solar-blind ultraviolet(UV)photodetectors based on p-organic/n-Ga_(2)O_(3) hybrid heterojunctions have attracted extensive attention recently.Herein,the multifunctional solar-blind photodetector based on p-type poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)](PCDTBT)/n-type amorphous Ga_(2)O_(3)(a-Ga_(2)O_(3))is fabricated and investigated,which can work in the phototransistor mode coupling with self-powered mode.With the introduction of PCDTBT,the dark current of such the a-Ga_(2)O_(3)-based photodetector is decreased to 0.48 pA.Meanwhile,the photoresponse parameters of the a-Ga_(2)O_(3)-based photodetector in the phototransistor mode to solar-blind UV light are further increased,that is,responsivity(R),photo-detectivity(D*),and external quantum efficiency(EQE)enhanced to 187 A W^(-1),1.3×10^(16) Jones and 9.1×10^(4)% under the weak light intensity of 11μW cm^(-2),respectively.Thanks to the formation of the built-in field in the p-PCDTBT/n-Ga_(2)O_(3) type-Ⅱ heterojunction,the PCDTBT/Ga_(2)O_(3) multifunctional photodetector shows self-powered behavior.The responsivity of p-PCDTBT/n-Ga_(2)O_(3) multifunctional photodetector is 57.5 mA W^(-1) at zero bias.Such multifunctional p-n hybrid heterojunction-based photodetectors set the stage for realizing high-performance amorphous Ga_(2)O_(3) heterojunction-based photodetectors.展开更多
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv...Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.展开更多
Receptor-interacting serine/threonine-protein kinase 1(RIPK1)functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases.A number of allo...Receptor-interacting serine/threonine-protein kinase 1(RIPK1)functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases.A number of allosteric RIPK1 inhibitors(RIPK1i)have been developed,and some of them have already advanced into clinical evaluation.Recently,selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge.Here,we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i.We also describe the structure-guided lead optimization of a potent,selective,and orally bioavailable RIPK1i,62,which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases.Collectively,62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.展开更多
Fear memory underlies anxiety-related disorders, including posttraumatic stress disorder(PTSD). PTSD is a fear-based disorder,characterized by difficulties in extinguishing the learned fear response and maintaining ex...Fear memory underlies anxiety-related disorders, including posttraumatic stress disorder(PTSD). PTSD is a fear-based disorder,characterized by difficulties in extinguishing the learned fear response and maintaining extinction. Currently, the first-line treatment for PTSD is exposure therapy, which forms an extinction memory to compete with the original fear memory. However,the extinguished fear often returns under numerous circumstances, suggesting that novel methods are needed to eliminate fear memory or facilitate extinction memory. This review discusses research that targeted extinction and reconsolidation to manipulate fear memory. Recent studies indicate that sleep is an active state that can regulate memory processes. We also discuss the influence of sleep on fear memory. For each manipulation, we briefly summarize the neural mechanisms that have been identified in human studies. Finally, we highlight potential limitations and future directions in the field to better translate existing interventions to clinical settings.展开更多
SrZrS_(3)is a promising chalcogenide perovskite with unique advantages including high abundance of consisting elements,high chemical stability,strong light absorption above its direct band gap,excellent carrier transp...SrZrS_(3)is a promising chalcogenide perovskite with unique advantages including high abundance of consisting elements,high chemical stability,strong light absorption above its direct band gap,excellent carrier transport ability.While unfortunately,due to the lack of breakthroughs in its thin film synthesis technique,its optoelectronic properties are not fully investigated,not to mention the device applications.In this work,large-area and uniform SrZrS_(3)thin film(5 cm×5 cm)was prepared by facile sputtering method,followed by a post-annealing treatment at a high temperature of 1000℃for 2–12 h under CS_(2)atmosphere.All SrZrS_(3)samples prepared adopt distorted orthorhombic structure with pnma space group and have high crystallinity.In addition,the band gap of SrZrS_(3)thin film is measured to be 2.29 eV,higher than that of the powder form(2.06 eV).Importantly,the light absorption coefficient of SrZrS_(3)thin film reaches over 105 cm^(−1),the carrier mobility is as high as 106 cm^(2)/(V∙s).The above advantages allow us to use the SrZrS_(3)thin film as photoactive layer for photodetector applications.Finally,a symmetrically structured photoconductive detector was fabricated,performing a high responsivity of 8 A/W(405 nm light excitation).These inspiring results promise the glorious application potential of SrZrS_(3)thin film in photodetectors,solar cells,other optoelectronic devices.展开更多
Background SIRT3 is an important regulator in cell metabolism, and recent studies have shown that it may be involved in the pharmacological effects of metformin. However, the molecular mechanisms underlying this proce...Background SIRT3 is an important regulator in cell metabolism, and recent studies have shown that it may be involved in the pharmacological effects of metformin. However, the molecular mechanisms underlying this process are unclear. Methods The effects of SIRT3 on the regulation of oxidative stress and insulin resistance in skeletal muscle were evaluated in vitro. Differentiated L6 skeletal muscle cells were treated with 750 pmol/L palmitic acid to induce insulin resistance. SIRT3 was knocked down and overexpressed in L6 cells. SIRT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB) p65, c-Jun N-terminal kinase 1 (JNK1), and superoxide dismutase 2 (SOD2) were evaluated by Western blotting. Results Over expression of SIRT3 increased glucose uptake and decreased ROS production in L6-1R cells as well as in L6 cells. Knock-down of SIRT3 induced increased production of ROS while decreased glucose uptake in both L6 and L6- IR cells, and these effects were reversed by N-acetyI-L-cysteine (NAC). Metformin increased the expression of SIRT3 (1.5- fold) and SOD2 (2-fold) while down regulating NF-KB p65 (1.5-fold) and JNK1 (1.5-fold). Knockdown of SIRT3 (P〈0.05) reversed the metformin-induced decreases in NF-KB p65 and JNK1 and the metformin-induced increase in SOD2 (P〈0.05). Conclusions Upregulated SIRT3 is involved in the pharmacological mechanism by which metformin promotes glucose uptake. Additionally, SIRT3 may function as an important regulator of oxidative stress and a new alternative approach for targeting insulin resistance-related diseases.展开更多
The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assiste...The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assisted method is reported to integrate numerous accessible edge Fe-Nx sites into porous graphitic carbon(named Fe-N-G) for achieving highly active and robust oxygen electrocatalysis. Silica facilitates the formation of edge Fe-Nx sites and dense graphitic domains in carbon by inhibiting iron aggregation.The purification process creates a well-developed mass transfer channel for Fe-N-G. Consequently,Fe-N-G delivers a half-wave potential of 0.859 V in ORR and an overpotential of 344 m V at10 m A cm^(-2)in OER. During long-term operation, the graphitic layers protect edge Fe-Nx sites from demetallation in ORR and synergize with Fe OOH species endowing Fe-N-G with enhanced OER activity.Density functional theory calculations reveal that the edge Fe-Nx site is superior to the in-plane Fe-Nx site in terms of OH* dissociation in ORR and OOH* formation in OER. The constructed ZAB based on Fe-N-G cathode shows a higher peak power density of 133 m W cm^(-2)and more stable cycling performance than Pt/C + RuO2counterparts. This work provides a novel strategy to obtain high-efficiency bifunctional oxygen electrocatalysts through space mediation.展开更多
基金National Key Research and Development Program of China,Grant/Award Numbers:2021YFA0715600,2021YFA0717700National Natural Science Foundation of China,Grant/Award Numbers:52192610,62274127,62304163,62374128+5 种基金State Key Laboratory of Infrared Physics,Grant/Award Number:SITP-NLIST-ZD-2023-03Songshan Lake Materials Laboratory,Grant/Award Number:2023SLABFN02Wuhu and Xidian University special fund for industry-university-research cooperation,Grant/Award Number:XWYCXY-012021004China Postdoctoral Science Foundation,Grant/Award Number:2023TQ0255Fundamental Research Funds for the Central UniversitiesInnovation Fund of Xidian University。
文摘Solar-blind ultraviolet(UV)photodetectors based on p-organic/n-Ga_(2)O_(3) hybrid heterojunctions have attracted extensive attention recently.Herein,the multifunctional solar-blind photodetector based on p-type poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)](PCDTBT)/n-type amorphous Ga_(2)O_(3)(a-Ga_(2)O_(3))is fabricated and investigated,which can work in the phototransistor mode coupling with self-powered mode.With the introduction of PCDTBT,the dark current of such the a-Ga_(2)O_(3)-based photodetector is decreased to 0.48 pA.Meanwhile,the photoresponse parameters of the a-Ga_(2)O_(3)-based photodetector in the phototransistor mode to solar-blind UV light are further increased,that is,responsivity(R),photo-detectivity(D*),and external quantum efficiency(EQE)enhanced to 187 A W^(-1),1.3×10^(16) Jones and 9.1×10^(4)% under the weak light intensity of 11μW cm^(-2),respectively.Thanks to the formation of the built-in field in the p-PCDTBT/n-Ga_(2)O_(3) type-Ⅱ heterojunction,the PCDTBT/Ga_(2)O_(3) multifunctional photodetector shows self-powered behavior.The responsivity of p-PCDTBT/n-Ga_(2)O_(3) multifunctional photodetector is 57.5 mA W^(-1) at zero bias.Such multifunctional p-n hybrid heterojunction-based photodetectors set the stage for realizing high-performance amorphous Ga_(2)O_(3) heterojunction-based photodetectors.
基金supported by grants from the National Key Research and Development Program of China(2021YFD1901203)。
文摘Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.
基金We thank Prof.Junying Yuan(IRCBC of CAS,Shanghai,China)and Dr.Jidong Zhu(Etern Therapeutics,Shanghai,China)for their generous help on this work,Dr.Sudan He(ISM of CAMS,Suzhou,China)for providing RIPK3-FKBP NIH/3T3 cells,and National Facility for Protein Science in Shanghai(China)for the help in animal studies.This work was supported by grants from the National Natural Science Foundation of China(Grants Nos.21837004,82151212,and 32170755)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB39050500,China)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX02,China).
文摘Receptor-interacting serine/threonine-protein kinase 1(RIPK1)functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases.A number of allosteric RIPK1 inhibitors(RIPK1i)have been developed,and some of them have already advanced into clinical evaluation.Recently,selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge.Here,we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i.We also describe the structure-guided lead optimization of a potent,selective,and orally bioavailable RIPK1i,62,which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases.Collectively,62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAI13B01)
文摘Fear memory underlies anxiety-related disorders, including posttraumatic stress disorder(PTSD). PTSD is a fear-based disorder,characterized by difficulties in extinguishing the learned fear response and maintaining extinction. Currently, the first-line treatment for PTSD is exposure therapy, which forms an extinction memory to compete with the original fear memory. However,the extinguished fear often returns under numerous circumstances, suggesting that novel methods are needed to eliminate fear memory or facilitate extinction memory. This review discusses research that targeted extinction and reconsolidation to manipulate fear memory. Recent studies indicate that sleep is an active state that can regulate memory processes. We also discuss the influence of sleep on fear memory. For each manipulation, we briefly summarize the neural mechanisms that have been identified in human studies. Finally, we highlight potential limitations and future directions in the field to better translate existing interventions to clinical settings.
基金the National Natural Science Foundation of China(Nos.62104215 and 12074347)China Postdoctoral Science Foundation(Nos.2020M672257 and 2020TQ0286)+1 种基金Natural Science Foundation of Henan Province of China(No.202300410439)Department of Science and Technology of Henan Province of China(No.202102210214).
文摘SrZrS_(3)is a promising chalcogenide perovskite with unique advantages including high abundance of consisting elements,high chemical stability,strong light absorption above its direct band gap,excellent carrier transport ability.While unfortunately,due to the lack of breakthroughs in its thin film synthesis technique,its optoelectronic properties are not fully investigated,not to mention the device applications.In this work,large-area and uniform SrZrS_(3)thin film(5 cm×5 cm)was prepared by facile sputtering method,followed by a post-annealing treatment at a high temperature of 1000℃for 2–12 h under CS_(2)atmosphere.All SrZrS_(3)samples prepared adopt distorted orthorhombic structure with pnma space group and have high crystallinity.In addition,the band gap of SrZrS_(3)thin film is measured to be 2.29 eV,higher than that of the powder form(2.06 eV).Importantly,the light absorption coefficient of SrZrS_(3)thin film reaches over 105 cm^(−1),the carrier mobility is as high as 106 cm^(2)/(V∙s).The above advantages allow us to use the SrZrS_(3)thin film as photoactive layer for photodetector applications.Finally,a symmetrically structured photoconductive detector was fabricated,performing a high responsivity of 8 A/W(405 nm light excitation).These inspiring results promise the glorious application potential of SrZrS_(3)thin film in photodetectors,solar cells,other optoelectronic devices.
文摘Background SIRT3 is an important regulator in cell metabolism, and recent studies have shown that it may be involved in the pharmacological effects of metformin. However, the molecular mechanisms underlying this process are unclear. Methods The effects of SIRT3 on the regulation of oxidative stress and insulin resistance in skeletal muscle were evaluated in vitro. Differentiated L6 skeletal muscle cells were treated with 750 pmol/L palmitic acid to induce insulin resistance. SIRT3 was knocked down and overexpressed in L6 cells. SIRT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB) p65, c-Jun N-terminal kinase 1 (JNK1), and superoxide dismutase 2 (SOD2) were evaluated by Western blotting. Results Over expression of SIRT3 increased glucose uptake and decreased ROS production in L6-1R cells as well as in L6 cells. Knock-down of SIRT3 induced increased production of ROS while decreased glucose uptake in both L6 and L6- IR cells, and these effects were reversed by N-acetyI-L-cysteine (NAC). Metformin increased the expression of SIRT3 (1.5- fold) and SOD2 (2-fold) while down regulating NF-KB p65 (1.5-fold) and JNK1 (1.5-fold). Knockdown of SIRT3 (P〈0.05) reversed the metformin-induced decreases in NF-KB p65 and JNK1 and the metformin-induced increase in SOD2 (P〈0.05). Conclusions Upregulated SIRT3 is involved in the pharmacological mechanism by which metformin promotes glucose uptake. Additionally, SIRT3 may function as an important regulator of oxidative stress and a new alternative approach for targeting insulin resistance-related diseases.
基金financial support from the National Key Research and Development Project (2017YFB0308200)the CAS Key Laboratory of Carbon Materials (KLCMKFJJ2011)。
文摘The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assisted method is reported to integrate numerous accessible edge Fe-Nx sites into porous graphitic carbon(named Fe-N-G) for achieving highly active and robust oxygen electrocatalysis. Silica facilitates the formation of edge Fe-Nx sites and dense graphitic domains in carbon by inhibiting iron aggregation.The purification process creates a well-developed mass transfer channel for Fe-N-G. Consequently,Fe-N-G delivers a half-wave potential of 0.859 V in ORR and an overpotential of 344 m V at10 m A cm^(-2)in OER. During long-term operation, the graphitic layers protect edge Fe-Nx sites from demetallation in ORR and synergize with Fe OOH species endowing Fe-N-G with enhanced OER activity.Density functional theory calculations reveal that the edge Fe-Nx site is superior to the in-plane Fe-Nx site in terms of OH* dissociation in ORR and OOH* formation in OER. The constructed ZAB based on Fe-N-G cathode shows a higher peak power density of 133 m W cm^(-2)and more stable cycling performance than Pt/C + RuO2counterparts. This work provides a novel strategy to obtain high-efficiency bifunctional oxygen electrocatalysts through space mediation.