期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond 被引量:8
1
作者 Tian-cheng LIn jin-ya su +1 位作者 Wci LIU Juan M. CORCHADO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第12期1913-1939,共27页
Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that... Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov-Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed 'Gaussian conjugacy' in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity. 展开更多
关键词 Kalman filter Gaussian filter Time series estimation Bayesian filtering Nonlinear filtering Constrained filtering Gaussian mixture MANEUVER Unknown inputs
原文传递
基于无线通信密度的基站动态布点方法研究——以雄安新区为例 被引量:2
2
作者 魏若岩 金雅素 +1 位作者 石磊 高国栋 《河北省科学院学报》 CAS 2019年第3期1-10,共10页
针对提高移动手机的通信效率问题,提出了一种基于无线通信密度的基站的动态布点方法。该方法第一将某区域划分为单位网状结构,每个单位区域中会统计单位时间内通信的次数和时间长度,然后根据阈值确定是否在该区域设置点;第二,利用Delau... 针对提高移动手机的通信效率问题,提出了一种基于无线通信密度的基站的动态布点方法。该方法第一将某区域划分为单位网状结构,每个单位区域中会统计单位时间内通信的次数和时间长度,然后根据阈值确定是否在该区域设置点;第二,利用Delaunay三角剖分算法将点与它周边的点相连接,计算点之间的距离,去除连接密度低的点;第三,利用SOM算法(Self Organizing Maps,自组织神经网络)对剩余的点进行感知从而得到基站的布点;最后利用本文所提方法进行实验仿真从而得出结论。本文所提方法将以雄安新区为研究对象,为新区的智慧城市建设与发展提出建议。 展开更多
关键词 雄安新区 基站动态布点 无线通信密度 自组织神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部