苔藓与固氮蓝藻形成的共生体是许多受氮限制的天然陆地生态系统氮的主要来源,在全球氮循环中发挥着重要作用。不同生态系统的苔藓-蓝藻共生体物种组成及生长环境不同,固氮能力差异巨大。目前苔藓-蓝藻共生体的研究集中在北半球高纬度生...苔藓与固氮蓝藻形成的共生体是许多受氮限制的天然陆地生态系统氮的主要来源,在全球氮循环中发挥着重要作用。不同生态系统的苔藓-蓝藻共生体物种组成及生长环境不同,固氮能力差异巨大。目前苔藓-蓝藻共生体的研究集中在北半球高纬度生态系统中,其他生态系统报道较少且零散。本文统计了已报道的苔藓-蓝藻共生体在全球生态系统中的分布、物种组成、蓝藻定殖率、蓝藻丰度及固氮潜力。统计发现,全球目前共发现参与苔藓-蓝藻共生的苔藓植物41科58属110种,蓝藻9科17属(≥26种);不同生态系统苔藓-蓝藻共生体的苔藓物种组成差异大,例如在北方森林中,赤茎藓(Pleuroziumschreberi)-蓝藻为优势共生体,泥炭藓(Sphagnumspp.)-蓝藻是湿地生态系统中的优势共生体,而念珠藻(Nostoc)类以其独特的生理特性和强大的生态适应能力成为多数生态系统中的优势蓝藻类群;不同生态系统中蓝藻在苔藓植物上的定殖率、丰度及固氮能力具有较大差异;在全球生态系统中,北极苔原及北方森林生态系统的固氮量均较高,最高的固氮量发生在北极苔原生态系统(1.3–24.6 kg N·ha–1·yr–1),最低发生在温带草原生态系统(0.008–0.124 kg N·ha–1·yr–1)。最后,本文展望了苔藓-蓝藻共生体多样性及固氮研究的前景和亟待加强的研究方向。本文将为苔藓-蓝藻共生固氮的相关研究提供理论依据,并为进一步探讨其在全球氮循环中的地位提供数据和理论支撑。展开更多
文摘苔藓与固氮蓝藻形成的共生体是许多受氮限制的天然陆地生态系统氮的主要来源,在全球氮循环中发挥着重要作用。不同生态系统的苔藓-蓝藻共生体物种组成及生长环境不同,固氮能力差异巨大。目前苔藓-蓝藻共生体的研究集中在北半球高纬度生态系统中,其他生态系统报道较少且零散。本文统计了已报道的苔藓-蓝藻共生体在全球生态系统中的分布、物种组成、蓝藻定殖率、蓝藻丰度及固氮潜力。统计发现,全球目前共发现参与苔藓-蓝藻共生的苔藓植物41科58属110种,蓝藻9科17属(≥26种);不同生态系统苔藓-蓝藻共生体的苔藓物种组成差异大,例如在北方森林中,赤茎藓(Pleuroziumschreberi)-蓝藻为优势共生体,泥炭藓(Sphagnumspp.)-蓝藻是湿地生态系统中的优势共生体,而念珠藻(Nostoc)类以其独特的生理特性和强大的生态适应能力成为多数生态系统中的优势蓝藻类群;不同生态系统中蓝藻在苔藓植物上的定殖率、丰度及固氮能力具有较大差异;在全球生态系统中,北极苔原及北方森林生态系统的固氮量均较高,最高的固氮量发生在北极苔原生态系统(1.3–24.6 kg N·ha–1·yr–1),最低发生在温带草原生态系统(0.008–0.124 kg N·ha–1·yr–1)。最后,本文展望了苔藓-蓝藻共生体多样性及固氮研究的前景和亟待加强的研究方向。本文将为苔藓-蓝藻共生固氮的相关研究提供理论依据,并为进一步探讨其在全球氮循环中的地位提供数据和理论支撑。