Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the ...Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers(SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte(QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt,delivering a high lithium-ion transference number(0.75) and satisfactory ionic conductivity(1.16 × 10^(-3) S cm^(-1) at 30 ℃). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO_4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 ℃. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithiumions migration for high-performance polymer LMBs.展开更多
<strong>Objective:</strong> To explore the methods and effects of pectoralis major myocutaneous flap in pharyngolaryngeal cancer surgery. <strong>Methods:</strong> Among 23 cases of pharyngolar...<strong>Objective:</strong> To explore the methods and effects of pectoralis major myocutaneous flap in pharyngolaryngeal cancer surgery. <strong>Methods:</strong> Among 23 cases of pharyngolaryngeal cancer patients, the surgical procedure was based on pathologic conditions, and the surgical defects were repaired by pectoralis major myocutaneous flap. <strong>Results:</strong> Among 23 patients, there were 1 case of skin flap necrosis, 4 cases of pharyngeal fistula, 1 case of hypopharyngeal esophageal stenosis;except 1 case of pharyngeal fistula died of carotid artery rupture caused by infection, 1 case of hypopharyngeal esophageal stenosis required a gastric tube, and the rest patient’s swallowing function is normal. <strong>Conclusion:</strong> The blood supply of pectoralis major myocutaneous flap is reliable with the tissue volume enough for reconstruction. It turns out to improve patient survival and postoperative quality of life with the application of pharyngolaryngeal cancer surgery.展开更多
基金supported by the National Natural Science Foundation of China (52273081 and 22278329)the Natural Science Basic Research Program of Shaanxi (2022TD-27 and 2020-JC-09)+2 种基金Qin Chuangyuan Talent Project of Shaanxi Province (OCYRCXM2022-308)the State Key Laboratory for Electrical Insulation and Power Equipment (EIPE23125)the “Young Talent Support Plan” of Xi’an Jiaotong University。
文摘Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries(LMBs).Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers(SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte(QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt,delivering a high lithium-ion transference number(0.75) and satisfactory ionic conductivity(1.16 × 10^(-3) S cm^(-1) at 30 ℃). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO_4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 ℃. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithiumions migration for high-performance polymer LMBs.
文摘<strong>Objective:</strong> To explore the methods and effects of pectoralis major myocutaneous flap in pharyngolaryngeal cancer surgery. <strong>Methods:</strong> Among 23 cases of pharyngolaryngeal cancer patients, the surgical procedure was based on pathologic conditions, and the surgical defects were repaired by pectoralis major myocutaneous flap. <strong>Results:</strong> Among 23 patients, there were 1 case of skin flap necrosis, 4 cases of pharyngeal fistula, 1 case of hypopharyngeal esophageal stenosis;except 1 case of pharyngeal fistula died of carotid artery rupture caused by infection, 1 case of hypopharyngeal esophageal stenosis required a gastric tube, and the rest patient’s swallowing function is normal. <strong>Conclusion:</strong> The blood supply of pectoralis major myocutaneous flap is reliable with the tissue volume enough for reconstruction. It turns out to improve patient survival and postoperative quality of life with the application of pharyngolaryngeal cancer surgery.