An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. Th...An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5-10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.展开更多
We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle-RGO composites using a modified one...We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle-RGO composites using a modified one-step hydrothermal method. It was found that graphene oxide could be easily reduced under solvothermal conditions with ascorbic acid as reductant, with concomitant growth of TiO2 particles on the RGO surface. The TiO2-RGO composite has been thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy, and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The TiOR-RGO composite exhibited excellent photocatalysis of hydrogen evolution.展开更多
The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" th...The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions.展开更多
Chang'E-1 is the first lunar mission in China,which was successfully launched on Oct.24th,2007.It was guided to crash on the Moon on March 1,2009,at 52.36°E,1.50°S,in the north of Mare Fecunditatis.The t...Chang'E-1 is the first lunar mission in China,which was successfully launched on Oct.24th,2007.It was guided to crash on the Moon on March 1,2009,at 52.36°E,1.50°S,in the north of Mare Fecunditatis.The total mission lasted 495 days,exceeding the designed life-span about four months.1.37Terabytes raw data was received from Chang'E-1.It was then processed into 4Terabytes science data at different levels.A series of science results have been achieved by analyzing and applicating these data,especially "global image of the Moon of China's first lunar exploration mission".Four scientific goals of Chang'E-1 have been achieved.It provides abundant materials for the research of lunar sciences and cosmochemistry.Meanwhile these results will serve for China's future lunar missions.展开更多
The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the...The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.展开更多
文摘An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5-10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.
文摘We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle-RGO composites using a modified one-step hydrothermal method. It was found that graphene oxide could be easily reduced under solvothermal conditions with ascorbic acid as reductant, with concomitant growth of TiO2 particles on the RGO surface. The TiO2-RGO composite has been thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy, and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The TiOR-RGO composite exhibited excellent photocatalysis of hydrogen evolution.
文摘The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions.
文摘Chang'E-1 is the first lunar mission in China,which was successfully launched on Oct.24th,2007.It was guided to crash on the Moon on March 1,2009,at 52.36°E,1.50°S,in the north of Mare Fecunditatis.The total mission lasted 495 days,exceeding the designed life-span about four months.1.37Terabytes raw data was received from Chang'E-1.It was then processed into 4Terabytes science data at different levels.A series of science results have been achieved by analyzing and applicating these data,especially "global image of the Moon of China's first lunar exploration mission".Four scientific goals of Chang'E-1 have been achieved.It provides abundant materials for the research of lunar sciences and cosmochemistry.Meanwhile these results will serve for China's future lunar missions.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants 11825301,12003016,12073077the National Key R&D Program of China No.2021YFA0718600+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences with the Grant No.XDA15018400the Youth Innovation Promotion Association of CAS(2023061)。
文摘The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.