Chiglitazar(Carfloglitazar)is a novel peroxisome proliferator-activated receptor(PPAR)pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes.In this rand...Chiglitazar(Carfloglitazar)is a novel peroxisome proliferator-activated receptor(PPAR)pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes.In this randomized phase 3 trial,we compared the efficacy and safety of chiglitazar with sitagliptin in patients with type 2 diabetes who had insufficient glycemic control despite a strict diet and exercise regimen.Eligible patients were randomized(1:1:1)to receive chiglitazar 32 mg(n=245),chiglitazar 48 mg(n=246),or sitagliptin 100 mg(n=248)once daily for 24 weeks.The primary endpoint was the change in glycosylated hemoglobin A_(1C)(HbA_(1c))from baseline at week 24 with the non-inferiority of chiglitazar over sitagliptin.Both chiglitazar and sitagliptin significantly reduced HbA1c at week 24 with values of-1.40%,-1.47%,and-1.39%for chiglitazar 32 mg,chiglitazar 48 mg,and sitagliptin 100 mg,respectively.Chiglitazar 32 and 48 mg were both non-inferior to sitagliptin 100 mg,with mean differences of-0.04%(95%confidential interval(Cl)-0.22 to 0.15)and-0.08%(95%Cl-0.27 to 0.10),respectively.Compared with sitagliptin,greater reduction in fasting and 2-h postprandial plasma glucose and fasting insulin was observed with chiglitazar.Overall adverse event rates were similar between the groups.A small increase in mild edema in the chiglitazar 48 mg group and slight weight gain in both chiglitazar groups were reported.The overall results demonstrated that chiglitazar possesses good efficacy and safety profile in patients with type 2 diabetes inadequately controlled with lifestyle interventions,thereby providing adequate supporting evidence for using this PPAR pan-agonist as a treatment option for type 2 diabetes.展开更多
The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an e...The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.展开更多
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
In this study,in vitro degradation and biocompatibility of Mg-Nd-Zn-Zr(NZK) alloy were investigated to determine its suitability as a degradable medical biomaterial.Its corrosion properties were evaluated by static im...In this study,in vitro degradation and biocompatibility of Mg-Nd-Zn-Zr(NZK) alloy were investigated to determine its suitability as a degradable medical biomaterial.Its corrosion properties were evaluated by static immersion test,electrochemical corrosion test,scanning electron microscopy(SEM),and energy dispersive spectroscopic(EDS) analysis,and in vitro biocompatibilities were assessed by hemolysis and cytotoxicity tests.Pure magnesium was used as control.The results of static immersion test and electrochemical corrosion test in simulated body fluid(SBF) demonstrated that the addition of alloying elements could improve the corrosion resistance.The hemolysis test found that the hemolysis rate of calcium phosphate coated NZK alloy was 4.8%,which was lower than the safe value of 5%.The cytotoxicity test indicated that NZK alloy extracts did not significantly reduce MC3T3-E1 cell viability.Hemolysis test and cytotoxicity test display excellent hemocompatibility and cytocompatibility of NZK alloy in vitro.Our data indicate that NZK alloy has excellent biocompatibility and thus can be considered as a potential degradable medical biomaterial for orthopedic applications.展开更多
Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnec...Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.展开更多
基金the Chinese National and Provincial Major Project for New Drug Innovation(National:2008ZX09101-002,2013ZX09401301Provincial:2011A080501010)Shenzhen Municipal Major Project(2010-1746)。
文摘Chiglitazar(Carfloglitazar)is a novel peroxisome proliferator-activated receptor(PPAR)pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes.In this randomized phase 3 trial,we compared the efficacy and safety of chiglitazar with sitagliptin in patients with type 2 diabetes who had insufficient glycemic control despite a strict diet and exercise regimen.Eligible patients were randomized(1:1:1)to receive chiglitazar 32 mg(n=245),chiglitazar 48 mg(n=246),or sitagliptin 100 mg(n=248)once daily for 24 weeks.The primary endpoint was the change in glycosylated hemoglobin A_(1C)(HbA_(1c))from baseline at week 24 with the non-inferiority of chiglitazar over sitagliptin.Both chiglitazar and sitagliptin significantly reduced HbA1c at week 24 with values of-1.40%,-1.47%,and-1.39%for chiglitazar 32 mg,chiglitazar 48 mg,and sitagliptin 100 mg,respectively.Chiglitazar 32 and 48 mg were both non-inferior to sitagliptin 100 mg,with mean differences of-0.04%(95%confidential interval(Cl)-0.22 to 0.15)and-0.08%(95%Cl-0.27 to 0.10),respectively.Compared with sitagliptin,greater reduction in fasting and 2-h postprandial plasma glucose and fasting insulin was observed with chiglitazar.Overall adverse event rates were similar between the groups.A small increase in mild edema in the chiglitazar 48 mg group and slight weight gain in both chiglitazar groups were reported.The overall results demonstrated that chiglitazar possesses good efficacy and safety profile in patients with type 2 diabetes inadequately controlled with lifestyle interventions,thereby providing adequate supporting evidence for using this PPAR pan-agonist as a treatment option for type 2 diabetes.
基金supported by the National Natural Science Foundation of China (Grant Nos 50909041, 50539110, 50809025, 50879024)National Science and Technology Support Plan (Grant Nos 2008BAB29B03, 2008BAB29B06)+4 种基金China Hydropower Engineering Consulting Group Co Science and Technology Support Project (Grant No CHC-KJ-2007-02)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No 2017-B08037)Science Foundation for the Excellent Youth Scholars of Minis-try of Education of China (Grant No 20070294023)the Special Fund of State Key Laboratory of China (Grant No 2009586012)the Fundamental Research Funds for the Central Universities (Grant No 2009B08514)
文摘The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金supported by the National Natural Science Foundation of China (81071452 and 30772182)
文摘In this study,in vitro degradation and biocompatibility of Mg-Nd-Zn-Zr(NZK) alloy were investigated to determine its suitability as a degradable medical biomaterial.Its corrosion properties were evaluated by static immersion test,electrochemical corrosion test,scanning electron microscopy(SEM),and energy dispersive spectroscopic(EDS) analysis,and in vitro biocompatibilities were assessed by hemolysis and cytotoxicity tests.Pure magnesium was used as control.The results of static immersion test and electrochemical corrosion test in simulated body fluid(SBF) demonstrated that the addition of alloying elements could improve the corrosion resistance.The hemolysis test found that the hemolysis rate of calcium phosphate coated NZK alloy was 4.8%,which was lower than the safe value of 5%.The cytotoxicity test indicated that NZK alloy extracts did not significantly reduce MC3T3-E1 cell viability.Hemolysis test and cytotoxicity test display excellent hemocompatibility and cytocompatibility of NZK alloy in vitro.Our data indicate that NZK alloy has excellent biocompatibility and thus can be considered as a potential degradable medical biomaterial for orthopedic applications.
基金supported by grants from Shenzhen Key Medical Subject(No.SZXK023)Shenzhen“SanMing”Project of Medicine(No.SZSM201612092)+3 种基金Shenzhen Research and Development Projects(No.JCYJ20170307111755218)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011290)National Key Research and Development Program of China(No.2016YFC1102103)China Postdoctoral Science Foundation(No.2020M672756)
文摘Interconnectivity is the key characteristic of bone tissue engineering scaffold modulating cell migration,blood vessels invasion and transport of nutrient and waste.However,efforts and understanding of the interconnectivity of porous Mg is limited due to the diverse architectures of pore struts and pore size distribution of Mg scaffold systems.In this work,biomimetic hierarchical porous Mg scaffolds with tailored interconnectivity as well as pore size distribution were prepared by template replication of infiltration casting.Mg scaffold with better interconnectivity showed lower mechanical strength.Enlarging interconnected pores would enhance the interconnectivity of the whole scaffold and reduce the change of ion concentration,pH value and osmolality of the degradation microenvironment due to the lower specific surface area.Nevertheless,the degradation rates of five tested Mg scaffolds were no different because of the same geometry of strut unit.Direct cell culture and evaluation of cell density at both sides of four typical Mg scaffolds indicated that cell migration through hierarchical porous Mg scaffolds could be enhanced by not only bigger interconnected pore size but also larger main pore size.In summary,design of interconnectivity in terms of pore size distribution could regulate mechanical strength,microenvironment in cell culture condition and cell migration potential,and beyond that it shows great potential for personalized therapy which could facilitate the regeneration process.