Background A full-energy LINAC is under development at Wuhan Advanced Light Source(WALS)to provide beams for the 1.5 GeV storage ring proposed as a fourth-generation synchrotron radiation light source and a future fre...Background A full-energy LINAC is under development at Wuhan Advanced Light Source(WALS)to provide beams for the 1.5 GeV storage ring proposed as a fourth-generation synchrotron radiation light source and a future free electron laser(FEL)facility.The LINAC starts from a photoinjector that is able to produce electron beams with low emittance(<1 mm·mrad),small relative energy spread(<0.5%),and high bunch charge(~1 nC).Purpose and methods To minimize the output emittance and RMS bunch length for the purpose of improving the photoinjector brightness,the influence of different laser pulse profiles on the slice emittance is investigated,and the beam dynamics simulation is performed with non-dominated sorting genetic algorithm-II(NSGA-II)combining with ASTRA code to find the optimal solution at a bunch charge of 1 nC.Results and conclusion In this paper,the beam dynamics optimization of the photoinjector is presented in detail;the simulation results imply that the laser pulse profile with 1σtruncated Gaussian distribution in transverse and flat-top-like temporal distribution is beneficial to the improvement of beam brightness of the photoinjector,which shows an output emittance of 0.63 mm·mrad in the case of intrinsic thermal emittance of 0.43 mm·mrad.展开更多
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate wh...Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.展开更多
基金supported by Science and Technology Major Project of Hubei Province in China(2021AFB001).
文摘Background A full-energy LINAC is under development at Wuhan Advanced Light Source(WALS)to provide beams for the 1.5 GeV storage ring proposed as a fourth-generation synchrotron radiation light source and a future free electron laser(FEL)facility.The LINAC starts from a photoinjector that is able to produce electron beams with low emittance(<1 mm·mrad),small relative energy spread(<0.5%),and high bunch charge(~1 nC).Purpose and methods To minimize the output emittance and RMS bunch length for the purpose of improving the photoinjector brightness,the influence of different laser pulse profiles on the slice emittance is investigated,and the beam dynamics simulation is performed with non-dominated sorting genetic algorithm-II(NSGA-II)combining with ASTRA code to find the optimal solution at a bunch charge of 1 nC.Results and conclusion In this paper,the beam dynamics optimization of the photoinjector is presented in detail;the simulation results imply that the laser pulse profile with 1σtruncated Gaussian distribution in transverse and flat-top-like temporal distribution is beneficial to the improvement of beam brightness of the photoinjector,which shows an output emittance of 0.63 mm·mrad in the case of intrinsic thermal emittance of 0.43 mm·mrad.
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
文摘Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.