The replenishment source of Xidatan drinking mineral springs in island permafrost area on north slope of the Kunlun Mountains are mainly the melting water from the modern glaciers bottom, snow and ice melting water, a...The replenishment source of Xidatan drinking mineral springs in island permafrost area on north slope of the Kunlun Mountains are mainly the melting water from the modern glaciers bottom, snow and ice melting water, atmospheric precipitation, and surface water in Yuzhu Peak area on the Kunlun Mountains. This scenario is based on the survey of hydrogeology, water-conducting and water-controlling faults, and water chemistry, and on the EH-4 high-frequency electronic deep exploration. The original water recharges the deep groundwater at fracture zone of active normal faults F3 and F4 , then groundwater enriches at normal faults F2 and F2-1,2 , and then run northward. A water-rich triangle area is formed when groundwater reach the active reverse fault F1 . Groundwater then discharges through fracture zone of F1 , which is the major cause of the Xidatan mineral springs formation.展开更多
The paper chooses the secondary tectonic units of Sichuan Basin as the evaluation object, and considers regional crustal stability conditions, basic geological conditions, reservoir and cap rock conditions, storage po...The paper chooses the secondary tectonic units of Sichuan Basin as the evaluation object, and considers regional crustal stability conditions, basic geological conditions, reservoir and cap rock conditions, storage potential conditions, geothermal conditions, research degree and potential resources conditions, social and economic conditions as first-level indexes. Based on collected data and a comprehensive analysis of 16 level-two indexes and 9 level-three indexes, and with the application of comprehensive index method, the conclusions regarding the suitability partition of the secondary tectonic units of Sichuan Basin are as follows: Central Sichuan low-flat structural belt is highly suitable for carbon dioxide geological storage, West Sichuan low-slope structural belt is relatively suitable, and SW low-slope structural belt is unsuitable for carbon dioxide geological storage, South Sichuan low-slope structural belt is relatively unsuitable, whereas East Sichuan high-slope faulted fold belt, and North Sichuan low-flat structural belt are fairly suitable for carbon dioxide geological storage. Based on the above, with a comprehensive analysis of corresponding hydrographic and geological conditions, and at the same time considering the non-cov- ered oil or gas resources and the buried structure, six CO2 geological target formations are identified, including lower Jurassic Ziliujing Group, upper Triassic Xujiahe Group, middle Triassic Leikoupo Group, lower Triassic Jialingjiang Group and Feixianguan Group, and lower Permian Qixia Group. This paper provides an important guidance and reference for the selection criteria of CO2 geologic storage sites in Sichuan Basin.展开更多
基金supported by a grant from the Survey Project, China Geological Survey (No.:12120108180801212010918042)
文摘The replenishment source of Xidatan drinking mineral springs in island permafrost area on north slope of the Kunlun Mountains are mainly the melting water from the modern glaciers bottom, snow and ice melting water, atmospheric precipitation, and surface water in Yuzhu Peak area on the Kunlun Mountains. This scenario is based on the survey of hydrogeology, water-conducting and water-controlling faults, and water chemistry, and on the EH-4 high-frequency electronic deep exploration. The original water recharges the deep groundwater at fracture zone of active normal faults F3 and F4 , then groundwater enriches at normal faults F2 and F2-1,2 , and then run northward. A water-rich triangle area is formed when groundwater reach the active reverse fault F1 . Groundwater then discharges through fracture zone of F1 , which is the major cause of the Xidatan mineral springs formation.
文摘The paper chooses the secondary tectonic units of Sichuan Basin as the evaluation object, and considers regional crustal stability conditions, basic geological conditions, reservoir and cap rock conditions, storage potential conditions, geothermal conditions, research degree and potential resources conditions, social and economic conditions as first-level indexes. Based on collected data and a comprehensive analysis of 16 level-two indexes and 9 level-three indexes, and with the application of comprehensive index method, the conclusions regarding the suitability partition of the secondary tectonic units of Sichuan Basin are as follows: Central Sichuan low-flat structural belt is highly suitable for carbon dioxide geological storage, West Sichuan low-slope structural belt is relatively suitable, and SW low-slope structural belt is unsuitable for carbon dioxide geological storage, South Sichuan low-slope structural belt is relatively unsuitable, whereas East Sichuan high-slope faulted fold belt, and North Sichuan low-flat structural belt are fairly suitable for carbon dioxide geological storage. Based on the above, with a comprehensive analysis of corresponding hydrographic and geological conditions, and at the same time considering the non-cov- ered oil or gas resources and the buried structure, six CO2 geological target formations are identified, including lower Jurassic Ziliujing Group, upper Triassic Xujiahe Group, middle Triassic Leikoupo Group, lower Triassic Jialingjiang Group and Feixianguan Group, and lower Permian Qixia Group. This paper provides an important guidance and reference for the selection criteria of CO2 geologic storage sites in Sichuan Basin.