Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainf...Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainfall is important for effective planning among the different stakeholders in the weather and climate sectors. This study aimed at understanding how intra seasonal rainfall characteristics, especially Consecutive Dry Days (CDD) and Consecutive Wet Days (CWD), in the two major rainfall seasons will change under two future climate scenarios of RCP4.5 and RCP8.5 in Uganda, covering two future periods of 2021-2050 and 2051-2080. The results indicate a high likelihood of reduced consecutive rainfall days, especially over the Northeastern regions of the country, for both 2021-2050 and 2051-2080. However, the trends in the entire country for the two major rainfall seasons, March to May and September to November, are not significant. Nonetheless, the distribution of these days is important for most agricultural activities during different stages of crop growth. The consecutive dry days show a fairly increasing trend in the eastern part of the country, particularly in the second season of September to November. An increase in consecutive dry days implies more frequent dry spells in the midst of the growing season, potentially affecting some crops during critical growth stages.展开更多
文摘Rainfall is a key climate parameter that affects most operations that affect human life, especially in the tropics. Therefore, understanding the various factors that affect the distribution and intensity of this rainfall is important for effective planning among the different stakeholders in the weather and climate sectors. This study aimed at understanding how intra seasonal rainfall characteristics, especially Consecutive Dry Days (CDD) and Consecutive Wet Days (CWD), in the two major rainfall seasons will change under two future climate scenarios of RCP4.5 and RCP8.5 in Uganda, covering two future periods of 2021-2050 and 2051-2080. The results indicate a high likelihood of reduced consecutive rainfall days, especially over the Northeastern regions of the country, for both 2021-2050 and 2051-2080. However, the trends in the entire country for the two major rainfall seasons, March to May and September to November, are not significant. Nonetheless, the distribution of these days is important for most agricultural activities during different stages of crop growth. The consecutive dry days show a fairly increasing trend in the eastern part of the country, particularly in the second season of September to November. An increase in consecutive dry days implies more frequent dry spells in the midst of the growing season, potentially affecting some crops during critical growth stages.