Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored ...Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.展开更多
We have verified the use of a serial filtration method to isolate picocyanobacteria for analysis. We used eDNA metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genus Cyanobium, s...We have verified the use of a serial filtration method to isolate picocyanobacteria for analysis. We used eDNA metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genus Cyanobium, specifically Cyanobium 6307. Fluorometric analysis using accessory pigments phycocyanin and phycoerythrin described periods of excess biomass, where the net growth rate model confirmed these conditions. The total anatoxin-a concentrations in the picocyanobacterial sample ranged from 0.0074 - 6.41 μg·L<sup>-1</sup> representing a 40-fold difference over the entire sampling season. Sampling frequency of every three days appeared to be an important factor in capturing these changes in anatoxin-a concentration. During a period of excess biomass, we were able to establish a linear correlation between cyanobacterial biomass and Anatoxin-a concentrations.展开更多
We have used serial filtration to isolate picocyanobacteria from brackish and marine microhabitats for analysis. We used 16s metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genu...We have used serial filtration to isolate picocyanobacteria from brackish and marine microhabitats for analysis. We used 16s metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genus Cyanobium 6307 (Upper Chilmark Pond) and differing abundances of Cyanobium 6307 and Synechococcus 9902 (Chilmark Pond, Edgartown Great Pond, Tisbury Great Pond and Tashmoo Pond). The proportion and composition of (pico)cyanobacteria in water samples were influenced by the salinity concentrations at various sites, as evidenced by fluorometry and 16s metabarcoding analysis. The cyanobacterial neurotoxin anatoxin-a was present in the picocyanobacterial samples from all studied sites. Additional analyses using fluorometry and 16s metabarcoding described members of the Order Nostocales, including a halotolerant population of Dolichospermum sp., Sphaerospermopsis spp. and Nodularia spp. in Upper Chilmark Pond. We were able to establish a positive linear correlation between cyanobacterial biomass (phycocyanin) and anatoxin-a concentrations using samples taken from Upper Chilmark Pond.展开更多
Due to the shortage supply of propylene and the development of shale gas,there is increased interest in on-purpose propane dehydrogenation(PDH)technology for propylene production.Ga-based catalysts have great potentia...Due to the shortage supply of propylene and the development of shale gas,there is increased interest in on-purpose propane dehydrogenation(PDH)technology for propylene production.Ga-based catalysts have great potential in PDH,due to the high activity,low carbon deposit and deactivation.Ga-hydrides formed during PDH reduce the rate,selectivity and yield of propylene.In this contribution,CO_(2)is introduced into PDH as a soft oxidant to eliminate the unfavorable intermediate species Ga^(δ+)-Hx re-generating Ga^(3+)-O pairs,and also minimize coke deposition thereby improving the catalytic performance.In situ diffuse reflectance infrared Fourier transform(DRIFT)spectroscopy experiments show that CO_(2)can effectively eliminate Ga^(δ+)-Hx.At different temperatures,co-feeding CO_(2)during PDH over Ga_(2)O_(3)/SiO_(2)catalysts with different loadings significantly improves the stability of the conversion and selectivity,especially the latter,and provide a new dimension for improving the performance of PDH process.展开更多
文摘Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.
文摘We have verified the use of a serial filtration method to isolate picocyanobacteria for analysis. We used eDNA metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genus Cyanobium, specifically Cyanobium 6307. Fluorometric analysis using accessory pigments phycocyanin and phycoerythrin described periods of excess biomass, where the net growth rate model confirmed these conditions. The total anatoxin-a concentrations in the picocyanobacterial sample ranged from 0.0074 - 6.41 μg·L<sup>-1</sup> representing a 40-fold difference over the entire sampling season. Sampling frequency of every three days appeared to be an important factor in capturing these changes in anatoxin-a concentration. During a period of excess biomass, we were able to establish a linear correlation between cyanobacterial biomass and Anatoxin-a concentrations.
文摘We have used serial filtration to isolate picocyanobacteria from brackish and marine microhabitats for analysis. We used 16s metabarcoding to confirm the picocyanobacteria as members of the Order Synechococcales, Genus Cyanobium 6307 (Upper Chilmark Pond) and differing abundances of Cyanobium 6307 and Synechococcus 9902 (Chilmark Pond, Edgartown Great Pond, Tisbury Great Pond and Tashmoo Pond). The proportion and composition of (pico)cyanobacteria in water samples were influenced by the salinity concentrations at various sites, as evidenced by fluorometry and 16s metabarcoding analysis. The cyanobacterial neurotoxin anatoxin-a was present in the picocyanobacterial samples from all studied sites. Additional analyses using fluorometry and 16s metabarcoding described members of the Order Nostocales, including a halotolerant population of Dolichospermum sp., Sphaerospermopsis spp. and Nodularia spp. in Upper Chilmark Pond. We were able to establish a positive linear correlation between cyanobacterial biomass (phycocyanin) and anatoxin-a concentrations using samples taken from Upper Chilmark Pond.
文摘Due to the shortage supply of propylene and the development of shale gas,there is increased interest in on-purpose propane dehydrogenation(PDH)technology for propylene production.Ga-based catalysts have great potential in PDH,due to the high activity,low carbon deposit and deactivation.Ga-hydrides formed during PDH reduce the rate,selectivity and yield of propylene.In this contribution,CO_(2)is introduced into PDH as a soft oxidant to eliminate the unfavorable intermediate species Ga^(δ+)-Hx re-generating Ga^(3+)-O pairs,and also minimize coke deposition thereby improving the catalytic performance.In situ diffuse reflectance infrared Fourier transform(DRIFT)spectroscopy experiments show that CO_(2)can effectively eliminate Ga^(δ+)-Hx.At different temperatures,co-feeding CO_(2)during PDH over Ga_(2)O_(3)/SiO_(2)catalysts with different loadings significantly improves the stability of the conversion and selectivity,especially the latter,and provide a new dimension for improving the performance of PDH process.