A domestic balloon-type digester with 1200 liters of substrate and a 700-litre gas reserve was installed at the Université Gaston Berger pilot farm, which has 4 cows. After an initial load of 1000 L of water, 90 ...A domestic balloon-type digester with 1200 liters of substrate and a 700-litre gas reserve was installed at the Université Gaston Berger pilot farm, which has 4 cows. After an initial load of 1000 L of water, 90 L of bovine rumen and 145 L of cow dung, the functional parameters of the reaction medium, i.e., temperature, pH, salinity and conductimetry, were regularly monitored at a rate of 3 tests per day until the thirtieth day, corresponding to the flame test and the start of analysis and daily loading of the biodigester. The analysis of the biogas obtained after the flame test showed us the considerable contribution of bovine hindquarters to the CH4 fraction, which reached 72.2% from the start of the production phase. As anaerobic digestion is both a complex and multiparametric process, microbiological analysis revealed the presence of several strains of bacteria in the substrate used. Among the most abundant were Escherichia coli, Klebsiella spp, non-fermentative Gram-negative bacilli and Enterococcus sp. However, the bacterial strain that interests us most in anaerobic digestion is the non-fermentative Gram-negative family. We see the identification and temporal monitoring of these families of bacteria as a major step forward in the control of anaerobic fermentation processes in the Sahelian context and in Senegal in particular.展开更多
The</span><span style="font-family:""><span style="font-family:Verdana;"> Anaerobic digestion in Senegal is of particular interest to the scientific com</span><span ...The</span><span style="font-family:""><span style="font-family:Verdana;"> Anaerobic digestion in Senegal is of particular interest to the scientific com</span><span style="font-family:Verdana;">munity given the availability of substrates and their distributio</span><span style="font-family:Verdana;">n throughout the country. However, from a technological point of view, the existing installations seem to be obsolete, which does not allow to reproduce the results of the laboratory tests. Thus, the present study aims to take stock of the situation in relation to the studies carried out in laboratories and those concerning the actual monitoring of the bio-digesters </span><i><span style="font-family:Verdana;">in</span></i> <i><span style="font-family:Verdana;">situ</span></i><span style="font-family:Verdana;">. In fact, most experimental bio-digesters operate under optimal implementation conditions with strict control of input and output parameters. However, this is not the case for reactors installed in the field, as these so-called bio-digesters are exposed to r</span><span style="font-family:Verdana;">eal environmental conditions with a periodic variation of the phy</span><span style="font-family:Verdana;">sic-chemical parameters in the reactors throughout the day. This leads to a differential behavior of the micro-organisms, thus affecting their performance. This results in lower yields for those digesters operating under real environmental conditions.展开更多
文摘A domestic balloon-type digester with 1200 liters of substrate and a 700-litre gas reserve was installed at the Université Gaston Berger pilot farm, which has 4 cows. After an initial load of 1000 L of water, 90 L of bovine rumen and 145 L of cow dung, the functional parameters of the reaction medium, i.e., temperature, pH, salinity and conductimetry, were regularly monitored at a rate of 3 tests per day until the thirtieth day, corresponding to the flame test and the start of analysis and daily loading of the biodigester. The analysis of the biogas obtained after the flame test showed us the considerable contribution of bovine hindquarters to the CH4 fraction, which reached 72.2% from the start of the production phase. As anaerobic digestion is both a complex and multiparametric process, microbiological analysis revealed the presence of several strains of bacteria in the substrate used. Among the most abundant were Escherichia coli, Klebsiella spp, non-fermentative Gram-negative bacilli and Enterococcus sp. However, the bacterial strain that interests us most in anaerobic digestion is the non-fermentative Gram-negative family. We see the identification and temporal monitoring of these families of bacteria as a major step forward in the control of anaerobic fermentation processes in the Sahelian context and in Senegal in particular.
文摘The</span><span style="font-family:""><span style="font-family:Verdana;"> Anaerobic digestion in Senegal is of particular interest to the scientific com</span><span style="font-family:Verdana;">munity given the availability of substrates and their distributio</span><span style="font-family:Verdana;">n throughout the country. However, from a technological point of view, the existing installations seem to be obsolete, which does not allow to reproduce the results of the laboratory tests. Thus, the present study aims to take stock of the situation in relation to the studies carried out in laboratories and those concerning the actual monitoring of the bio-digesters </span><i><span style="font-family:Verdana;">in</span></i> <i><span style="font-family:Verdana;">situ</span></i><span style="font-family:Verdana;">. In fact, most experimental bio-digesters operate under optimal implementation conditions with strict control of input and output parameters. However, this is not the case for reactors installed in the field, as these so-called bio-digesters are exposed to r</span><span style="font-family:Verdana;">eal environmental conditions with a periodic variation of the phy</span><span style="font-family:Verdana;">sic-chemical parameters in the reactors throughout the day. This leads to a differential behavior of the micro-organisms, thus affecting their performance. This results in lower yields for those digesters operating under real environmental conditions.