The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilizati...The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.展开更多
The JPEG2000 still image compression standard, while providing a remedy for the many shortcomings of its predecessor JPEG, is still slow to establish itself on the Internet. This problem is mainly due to the complexit...The JPEG2000 still image compression standard, while providing a remedy for the many shortcomings of its predecessor JPEG, is still slow to establish itself on the Internet. This problem is mainly due to the complexity of the COder-DECoder (CODEC) which implies its non-adoption by large firms and platforms in the field of image acquisition, processing and transmission. Indeed, the encoding and decoding process consumes a lot of CPU, memory and energy resources and takes a lot of computing time. The objective of this paper is to propose a model for decoding jpeg2000 on lightweight devices running on the Android mobile operating system. This implementation uses coroutines, which are a lightweight process model with reduced resource consumption costs compared to conventional AsyncTask threadsets. The model minimizes decoding time while minimizing CPU and memory usage, resulting in a fast and energetically economical decoded image. The results of integrating the coroutines from the main thread into the decoding process instead of the AsyncTask from the main thread produced better performance in terms of computation time, CPU and memory utilization. Indeed, the use of our model has led to a gain of around 23.41% in execution time, 9.8% in CPU utilization rate and 18.56% in memory utilization rate, compared to the model proposed in the literature which uses the threads.展开更多
<span style="font-family:Verdana;">In a context marked by the proliferation of smartphones and multimedia applications, the processing and transmission of images </span><span style="font-...<span style="font-family:Verdana;">In a context marked by the proliferation of smartphones and multimedia applications, the processing and transmission of images </span><span style="font-family:Verdana;">ha</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ve</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> become a real problem. Image compression </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the first approach to address this problem, it nevertheless suffers from its inability to adapt to the dynamics of limited environments, consisting mainly of mobile equipment and wireless networks. In this work, we propose a stochastic model to gradually estimate an image upon </span><span style="font-family:Verdana;">information</span><span style="font-family:Verdana;"> on its pixels that are transmitted progressively. We consider this transmission as a </span><span style="font-family:Verdana;">dynamical</span><span style="font-family:Verdana;"> process, where the sender </span><span style="font-family:Verdana;">push</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the data in decreasing significance order. In order to adapt to network conditions and performances, instead of truncating the pixels, we suggest a new method called Fast Reconstruction Method by Kalman Filtering (FRM-KF) consisting </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of</span></span></span><span><span><span style="font-family:;" "=""><span style="fon展开更多
文摘The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.
文摘The JPEG2000 still image compression standard, while providing a remedy for the many shortcomings of its predecessor JPEG, is still slow to establish itself on the Internet. This problem is mainly due to the complexity of the COder-DECoder (CODEC) which implies its non-adoption by large firms and platforms in the field of image acquisition, processing and transmission. Indeed, the encoding and decoding process consumes a lot of CPU, memory and energy resources and takes a lot of computing time. The objective of this paper is to propose a model for decoding jpeg2000 on lightweight devices running on the Android mobile operating system. This implementation uses coroutines, which are a lightweight process model with reduced resource consumption costs compared to conventional AsyncTask threadsets. The model minimizes decoding time while minimizing CPU and memory usage, resulting in a fast and energetically economical decoded image. The results of integrating the coroutines from the main thread into the decoding process instead of the AsyncTask from the main thread produced better performance in terms of computation time, CPU and memory utilization. Indeed, the use of our model has led to a gain of around 23.41% in execution time, 9.8% in CPU utilization rate and 18.56% in memory utilization rate, compared to the model proposed in the literature which uses the threads.
文摘<span style="font-family:Verdana;">In a context marked by the proliferation of smartphones and multimedia applications, the processing and transmission of images </span><span style="font-family:Verdana;">ha</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ve</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> become a real problem. Image compression </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the first approach to address this problem, it nevertheless suffers from its inability to adapt to the dynamics of limited environments, consisting mainly of mobile equipment and wireless networks. In this work, we propose a stochastic model to gradually estimate an image upon </span><span style="font-family:Verdana;">information</span><span style="font-family:Verdana;"> on its pixels that are transmitted progressively. We consider this transmission as a </span><span style="font-family:Verdana;">dynamical</span><span style="font-family:Verdana;"> process, where the sender </span><span style="font-family:Verdana;">push</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the data in decreasing significance order. In order to adapt to network conditions and performances, instead of truncating the pixels, we suggest a new method called Fast Reconstruction Method by Kalman Filtering (FRM-KF) consisting </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of</span></span></span><span><span><span style="font-family:;" "=""><span style="fon