The corrosion performance of high pressure die-cast Al?6Si?3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5%(mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural stu...The corrosion performance of high pressure die-cast Al?6Si?3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5%(mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural studies revealed the presence of singlephase Si and binary Al3Ni/Al3Ni2 phases along the grain boundary. Besides, the single Cu phase was also identified at the grainboundaries of the SNC632 alloy. Electrochemical corrosion results revealed that, the SNC632 alloy exhibited nobler shift incorrosion potential (φcorr), lower corrosion current density (Jcorr) and higher corrosion resistance compared to the SN63 alloy.Equivalent circuit curve fitting analysis of electrochemical impedance spectroscopy (EIS) results revealed the existence of twointerfaces between the electrolyte and substrate. The surface layer and charge transfer resistance (Rct) of the SNC632 alloy was higherthan that of the SN63 alloy. Immersion corrosion test results also confirmed the lower corrosion rate of the SNC632 alloy andsubstantiated the electrochemical corrosion results. Cu addition improved the corrosion resistance, which was mainly attributed to theabsence of secondary Cu containing intermetallic phases in the SNC632 alloy and Cu presented as single phase.展开更多
基金financially supported by the World Class 300 R&D Program (S2404600)funded by the Small Business Administration of Korea through the Research Institute of Advanced Materials (041720170037)Magnesium Technology Innovation Center
文摘The corrosion performance of high pressure die-cast Al?6Si?3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5%(mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural studies revealed the presence of singlephase Si and binary Al3Ni/Al3Ni2 phases along the grain boundary. Besides, the single Cu phase was also identified at the grainboundaries of the SNC632 alloy. Electrochemical corrosion results revealed that, the SNC632 alloy exhibited nobler shift incorrosion potential (φcorr), lower corrosion current density (Jcorr) and higher corrosion resistance compared to the SN63 alloy.Equivalent circuit curve fitting analysis of electrochemical impedance spectroscopy (EIS) results revealed the existence of twointerfaces between the electrolyte and substrate. The surface layer and charge transfer resistance (Rct) of the SNC632 alloy was higherthan that of the SN63 alloy. Immersion corrosion test results also confirmed the lower corrosion rate of the SNC632 alloy andsubstantiated the electrochemical corrosion results. Cu addition improved the corrosion resistance, which was mainly attributed to theabsence of secondary Cu containing intermetallic phases in the SNC632 alloy and Cu presented as single phase.