We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa_(2)Fe_(4)A_(s4)F_(2)with T_(c)= 33.5 K. Our results reveal a possible pseudogap(...We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa_(2)Fe_(4)A_(s4)F_(2)with T_(c)= 33.5 K. Our results reveal a possible pseudogap(△_(PG)=(2.4 ± 0.1) me V) below T*≈ 50 K but prior to the opening of a superconducting gap(△SC(0) ≈(4.3 ± 0.1) me V). Measurements under high pump fluence reveal two distinct, coherent phonon oscillations with 1.95 and 5.51 THz frequencies, respectively. The high-frequency A1 g(2) mode corresponds to the c-axis polarized vibrations of Fe As planes with a nominal electron-phonon coupling constant λA1 g(2)= 0.194 ± 0.02.Our findings suggest that the pseudogap is likely a precursor of superconductivity, and the electron-phonon coupling may play an essential role in the superconducting pairing in KCa_(2)Fe_(4)A_(s4)F_(2).展开更多
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract...The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.展开更多
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds Ce_(m)M_(n)In_(3m+2n)(with M=Co,Rh,Ir,and Pt,m=1,2,n=0–2),at low temperature using on-resonance angle-resolved...We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds Ce_(m)M_(n)In_(3m+2n)(with M=Co,Rh,Ir,and Pt,m=1,2,n=0–2),at low temperature using on-resonance angle-resolved photoemission spectroscopy.Three heavy quasiparticle bands f^(0),f^(1/7/2)and f^(1/5/2),are observed in all compounds,whereas their intensities and energy locations vary greatly with materials.The strong f0 states imply that the localized electron behavior dominates the Ce 4f states.The Ce 4f electrons are partially hybridized with the conduction electrons,making them have the dual nature of localization and itinerancy.Our quantitative comparison reveals that the f^(1/5/2)–f^(0)intensity ratio is more suitable to reflect the 4f-state hybridization strength.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51502351,12074436,U2032204,11822411,11961160699,and 11874401)the National Key Research and Development Program of China(Grant Nos.2018YFA0704200,2017YFA0303100+6 种基金2017YFA0302900)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB25000000XDB07020300)the K.C.Wong Education Foundation(Grant No.GJTD-2020-01)support from the Innovation-driven Plan in Central South University(Grant No.2016CXS032)the support from the Youth Innovation Promotion Association of CAS(Grant No.Y202001)the Beijing Natural Science Foundation(Grant No.JQ19002)。
文摘We use ultrafast optical spectroscopy to study the nonequilibrium quasiparticle relaxation dynamics of the iron-based superconductor KCa_(2)Fe_(4)A_(s4)F_(2)with T_(c)= 33.5 K. Our results reveal a possible pseudogap(△_(PG)=(2.4 ± 0.1) me V) below T*≈ 50 K but prior to the opening of a superconducting gap(△SC(0) ≈(4.3 ± 0.1) me V). Measurements under high pump fluence reveal two distinct, coherent phonon oscillations with 1.95 and 5.51 THz frequencies, respectively. The high-frequency A1 g(2) mode corresponds to the c-axis polarized vibrations of Fe As planes with a nominal electron-phonon coupling constant λA1 g(2)= 0.194 ± 0.02.Our findings suggest that the pseudogap is likely a precursor of superconductivity, and the electron-phonon coupling may play an essential role in the superconducting pairing in KCa_(2)Fe_(4)A_(s4)F_(2).
基金Project(51675465)supported by the National Natural Science Foundation of ChinaProject(E2019203075)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BJ2019001)supported by the Top Young Talents Project of the Education Department of Hebei Province,ChinaProject(Kfkt2017-07)supported by the State Key Laboratory Program of High Performance Complex Manufacturing,China。
文摘The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and 11574402)the Innovation-Driven Plan in Central South University (Grant No. 2016CXS032)+7 种基金support through the Swedish Research Council (VR) and the Swedish National Infrastructure for Computing (SNIC),for computing time on computer cluster Triolith at the NSC center Link?ping (supported by VR Grant No. 2018-05973)the support from the Swedish Research Council (VR) through a Starting Grant (No. Dnr. 2017-05078)support from the Swedish Research Council(VR)the Knut and Alice Wallenberg foundationsupported by a Marie Sklodowska-Curie Action,International Career Grant through the European Commission and Swedish Research Council (VR)(Grant No. INCA-2014-6426)a VR neutron project (Grant No. BIFROST, Dnr. 2016-06955)granted by the Carl Tryggers Foundation for Scientific Research (Grant Nos. CTS-16:324 and CTS-17:325)the auspices of the U.S. Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering
文摘We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds Ce_(m)M_(n)In_(3m+2n)(with M=Co,Rh,Ir,and Pt,m=1,2,n=0–2),at low temperature using on-resonance angle-resolved photoemission spectroscopy.Three heavy quasiparticle bands f^(0),f^(1/7/2)and f^(1/5/2),are observed in all compounds,whereas their intensities and energy locations vary greatly with materials.The strong f0 states imply that the localized electron behavior dominates the Ce 4f states.The Ce 4f electrons are partially hybridized with the conduction electrons,making them have the dual nature of localization and itinerancy.Our quantitative comparison reveals that the f^(1/5/2)–f^(0)intensity ratio is more suitable to reflect the 4f-state hybridization strength.