长江中下游地区是我国淡水湖泊的主要集中区,随着社会和经济的快速发展,该地区绝大部分湖泊正处于富营养状态.作为湖泊生态系统中的分解者和生产者,细菌群落在维持物质循环和能量流动中扮演着极为重要的角色,然而其组成及种间关系对富...长江中下游地区是我国淡水湖泊的主要集中区,随着社会和经济的快速发展,该地区绝大部分湖泊正处于富营养状态.作为湖泊生态系统中的分解者和生产者,细菌群落在维持物质循环和能量流动中扮演着极为重要的角色,然而其组成及种间关系对富营养化过程的响应机制仍不明确.利用16S r DNA测序技术和分子生态网络技术探讨了长江中下游10个湖泊水体中细菌群落的组成、结构及其网络拓扑关系等特征.结果表明:①根据湖泊水体的富营养化指数,长江中下游地区的湖泊可分为中度富营养湖泊和重度富营养湖泊两种,并且这两种湖泊中细菌群落的α多样性均无显著性差异.②在这两种湖泊中细菌群落的优势类群基本一致,如在纲水平上均以Actinobacteria、Acidimicrobiia、Sphingobacteriia和Betaproteobacteria为主,在属水平上均以Hgcl_clade和CL500-29_marine-group为主.然而,与丰富种亚群落相反,稀有种亚群落在这两种湖泊中具有显著的区别.③中度富营养湖泊中细菌群落生态网络的节点和边的数量均小于重度富营养湖泊,并且前者网络具有更多的物种协作关系,其网络的中心性也显著大于后者.研究显示,湖泊富营养化的加剧使得水体中细菌群落的组成,尤其是稀有种亚群落发生了显著的演替,并且明显地削弱了细菌群落物种之间的协作关系.展开更多
反硝化(Denitrification,DNF)和硝酸盐异化还原为氨(Dissimilatory Nitrate Reduction to Ammonium,DNRA)是硝酸盐异养还原的2个主要途径.反硝化被认为是彻底去除水体氮负荷的主要过程;而硝酸盐异化还原为氨则将水体中的硝态氮转化为氨...反硝化(Denitrification,DNF)和硝酸盐异化还原为氨(Dissimilatory Nitrate Reduction to Ammonium,DNRA)是硝酸盐异养还原的2个主要途径.反硝化被认为是彻底去除水体氮负荷的主要过程;而硝酸盐异化还原为氨则将水体中的硝态氮转化为氨氮.2个过程均以硝酸盐为电子受体,并存在相互竞争关系.这2个过程的研究对理解湿地氮转化以及指导湿地氮污染修复具有重要意义.运用无扰动沉积物柱样流动培养、15NO-3-N同位素示踪实验,并采用氨氧化-膜接口质谱仪联用(OX/MIMS)测定氨氮同位素产物的方法,对鄱阳湖碟形湖湿地、巢湖重污染河流湿地、巢湖重污染湖泊湿地3种类型湿地沉积物-水界面的硝酸盐异养还原过程进行研究,结果表明存在显著差异.3种类型湿地DNF速率的范围为(6.36±2.57)^(99.98±14.05)μmol/(m2·h),DNRA速率的范围为(0.51±0.45)^(79.82±6.08)μmol/(m2·h).在3种类型湿地中,随着氮污染程度加重,DNF和DNRA速率均显著增加,且DNRA过程在总的硝态氮异养还原中所占的比重不断增大,说明较高的硝酸盐负荷、较高的沉积物有机质含量更有利于DNRA过程的竞争.而对反硝化方式的进一步研究发现,巢湖重污染河流、湖泊湿地主要以非耦合反硝化为主导过程,而鄱阳湖碟形湖湿地则更倾向于以硝化过程耦合控制的反硝化为主.展开更多
文摘长江中下游地区是我国淡水湖泊的主要集中区,随着社会和经济的快速发展,该地区绝大部分湖泊正处于富营养状态.作为湖泊生态系统中的分解者和生产者,细菌群落在维持物质循环和能量流动中扮演着极为重要的角色,然而其组成及种间关系对富营养化过程的响应机制仍不明确.利用16S r DNA测序技术和分子生态网络技术探讨了长江中下游10个湖泊水体中细菌群落的组成、结构及其网络拓扑关系等特征.结果表明:①根据湖泊水体的富营养化指数,长江中下游地区的湖泊可分为中度富营养湖泊和重度富营养湖泊两种,并且这两种湖泊中细菌群落的α多样性均无显著性差异.②在这两种湖泊中细菌群落的优势类群基本一致,如在纲水平上均以Actinobacteria、Acidimicrobiia、Sphingobacteriia和Betaproteobacteria为主,在属水平上均以Hgcl_clade和CL500-29_marine-group为主.然而,与丰富种亚群落相反,稀有种亚群落在这两种湖泊中具有显著的区别.③中度富营养湖泊中细菌群落生态网络的节点和边的数量均小于重度富营养湖泊,并且前者网络具有更多的物种协作关系,其网络的中心性也显著大于后者.研究显示,湖泊富营养化的加剧使得水体中细菌群落的组成,尤其是稀有种亚群落发生了显著的演替,并且明显地削弱了细菌群落物种之间的协作关系.
文摘反硝化(Denitrification,DNF)和硝酸盐异化还原为氨(Dissimilatory Nitrate Reduction to Ammonium,DNRA)是硝酸盐异养还原的2个主要途径.反硝化被认为是彻底去除水体氮负荷的主要过程;而硝酸盐异化还原为氨则将水体中的硝态氮转化为氨氮.2个过程均以硝酸盐为电子受体,并存在相互竞争关系.这2个过程的研究对理解湿地氮转化以及指导湿地氮污染修复具有重要意义.运用无扰动沉积物柱样流动培养、15NO-3-N同位素示踪实验,并采用氨氧化-膜接口质谱仪联用(OX/MIMS)测定氨氮同位素产物的方法,对鄱阳湖碟形湖湿地、巢湖重污染河流湿地、巢湖重污染湖泊湿地3种类型湿地沉积物-水界面的硝酸盐异养还原过程进行研究,结果表明存在显著差异.3种类型湿地DNF速率的范围为(6.36±2.57)^(99.98±14.05)μmol/(m2·h),DNRA速率的范围为(0.51±0.45)^(79.82±6.08)μmol/(m2·h).在3种类型湿地中,随着氮污染程度加重,DNF和DNRA速率均显著增加,且DNRA过程在总的硝态氮异养还原中所占的比重不断增大,说明较高的硝酸盐负荷、较高的沉积物有机质含量更有利于DNRA过程的竞争.而对反硝化方式的进一步研究发现,巢湖重污染河流、湖泊湿地主要以非耦合反硝化为主导过程,而鄱阳湖碟形湖湿地则更倾向于以硝化过程耦合控制的反硝化为主.