针对快速拓展随机树算法(rapidly-exploring random trees,RRT)存在采样随机、重复搜索、偏离目标点和节点冗余等问题,提出一种强化快速拓展随机树算法(intensity-guide rapidly-exploring random trees,IG-RRT)。采用覆盖剔除机制强化...针对快速拓展随机树算法(rapidly-exploring random trees,RRT)存在采样随机、重复搜索、偏离目标点和节点冗余等问题,提出一种强化快速拓展随机树算法(intensity-guide rapidly-exploring random trees,IG-RRT)。采用覆盖剔除机制强化算法搜索能力,将已搜索区域进行覆盖,覆盖后不再进行搜索和产生新节点,避免重复搜索,提高搜索能力和搜索效率。后续加入目标引导概率,根据地图难度对目标引导概率进行调整,强化算法目标趋向性,对末端节点采用贪婪思想,强化算法收敛性。通过简化路径,去除冗余点,利用三次B样条曲线平滑拐点,提高路径质量。仿真试验表明,IG-RRT算法性能优于传统RRT算法及其相关衍生算法。IG-RRT算法可以增强对复杂约束空间的搜索能力,加快算法的收敛速度,提高路径规划的成功率。展开更多
文摘针对快速拓展随机树算法(rapidly-exploring random trees,RRT)存在采样随机、重复搜索、偏离目标点和节点冗余等问题,提出一种强化快速拓展随机树算法(intensity-guide rapidly-exploring random trees,IG-RRT)。采用覆盖剔除机制强化算法搜索能力,将已搜索区域进行覆盖,覆盖后不再进行搜索和产生新节点,避免重复搜索,提高搜索能力和搜索效率。后续加入目标引导概率,根据地图难度对目标引导概率进行调整,强化算法目标趋向性,对末端节点采用贪婪思想,强化算法收敛性。通过简化路径,去除冗余点,利用三次B样条曲线平滑拐点,提高路径质量。仿真试验表明,IG-RRT算法性能优于传统RRT算法及其相关衍生算法。IG-RRT算法可以增强对复杂约束空间的搜索能力,加快算法的收敛速度,提高路径规划的成功率。