Data offloading at the network with less time and reduced energy con-sumption are highly important for every technology.Smart applications process the data very quickly with less power consumption.As technology grows t...Data offloading at the network with less time and reduced energy con-sumption are highly important for every technology.Smart applications process the data very quickly with less power consumption.As technology grows towards 5G communication architecture,identifying a solution for QoS in 5G through energy-efficient computing is important.In this proposed model,we perform data offloading at 5G using the fuzzification concept.Mobile IoT devices create tasks in the network and are offloaded in the cloud or mobile edge nodes based on energy consumption.Two base stations,small(SB)and macro(MB)stations,are initialized and thefirst tasks randomly computed.Then,the tasks are pro-cessed using a fuzzification algorithm to select SB or MB in the central server.The optimization is performed using a grasshopper algorithm for improving the QoS of the 5G network.The result is compared with existing algorithms and indi-cates that the proposed system improves the performance of the system with a cost of 44.64 J for computing 250 benchmark tasks.展开更多
文摘Data offloading at the network with less time and reduced energy con-sumption are highly important for every technology.Smart applications process the data very quickly with less power consumption.As technology grows towards 5G communication architecture,identifying a solution for QoS in 5G through energy-efficient computing is important.In this proposed model,we perform data offloading at 5G using the fuzzification concept.Mobile IoT devices create tasks in the network and are offloaded in the cloud or mobile edge nodes based on energy consumption.Two base stations,small(SB)and macro(MB)stations,are initialized and thefirst tasks randomly computed.Then,the tasks are pro-cessed using a fuzzification algorithm to select SB or MB in the central server.The optimization is performed using a grasshopper algorithm for improving the QoS of the 5G network.The result is compared with existing algorithms and indi-cates that the proposed system improves the performance of the system with a cost of 44.64 J for computing 250 benchmark tasks.