Incineration experiments with MSW, which had been impregnated with heavy metals, were presented to obtain information on the volatilization behavior of the elements cadmium(Cd), lead(Pb), and zinc(Zn) under different ...Incineration experiments with MSW, which had been impregnated with heavy metals, were presented to obtain information on the volatilization behavior of the elements cadmium(Cd), lead(Pb), and zinc(Zn) under different conditions. Experiments were carried out in a bubbling fluid bed system connected to a customized inductively coupled plasma optical emission spectroscopy(ICP-OES) for analyzing metals in the flue gas. The results indicated that the combustion temperature, the gas atmosphere, and the chlorine content in the flue gas could affect the volatilization behavior of heavy metals. In the fluidized bed combustion, a large surface area was provided by the bed sand particles, and they may act as absorbents for the gaseous ash-forming compound. Comparer with the metals Cd and Pb, the vaporization of Zn was low. The formation of stable compounds such as ZnO·Al 2O 3 could greatly decrease the metals volatilization. The presence of chlorine would enhance the volatilization of heavy metals by increasing the formation of metal chlorides. However, when the oxygen content was high, the chlorinating reaction was kinetically hindered, which heavy metals release would be delayed.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
Atmospheric corrosion of 304 and 316 stainless steels was studied by field exposure test, in which rain water was collected and analyzed by atomic absorption spectroscope (AAS). Emphasis was put on the dissolution of ...Atmospheric corrosion of 304 and 316 stainless steels was studied by field exposure test, in which rain water was collected and analyzed by atomic absorption spectroscope (AAS). Emphasis was put on the dissolution of chromium and nickel from the stainless steels by atmospheric corrosion and rain runoff. AAS analyses shows that the amounts of yearly chromium and nickel dissolution were less than 150ng/cm 2 and 50ng/cm 2 respectively for both 304 and 316 stainless steels. XPS analysis reveals the marked Cr enrichment on the 316 stainless steel after one year field exposure. SEM shows the morphology of corrosion pits on the steel surfaces.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) t...An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.展开更多
The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic proper...The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties. In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrA1Y foams was modeled by using a finite element (FE) model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well with experimental data.展开更多
The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation ...The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.展开更多
Spherical nanoindentation of an iron-chromium-aluminum alloy was conducted to study the effect of ferric-ion(Fe 3+)irradiation on the time-dependent plasticity behavior in the surface layers of this alloy.It was obser...Spherical nanoindentation of an iron-chromium-aluminum alloy was conducted to study the effect of ferric-ion(Fe 3+)irradiation on the time-dependent plasticity behavior in the surface layers of this alloy.It was observed that the initiation of plasticity by the appearance of displacement burst or“pop-in”event occurred after a period of waiting time in the apparent elastic regime and that Fe^(3+)irradiation at 360°C and up to∼0.5 displacements per atom could make it happen under the lower applied loads but with a reduced magnitude.Through the experimental data,an activation volume and activation energy were extracted for the delayed plasticity.The results show that Fe^(3+)-irradiation significantly reduced its acti-vation volume from∼3.05 b 3 to∼1.75 b 3(where b=Burgers vector),but slightly increased its activation energy from∼0.65 to∼0.71 eV.On the other hand,high-resolution scanning transmission electron mi-croscopy observations reveal that the irradiation at the elevated temperature created interstitial atom pair onto the(100)habit plane that can serve as the nucleation site of a100dislocation loop while elim-inating the pre-existing dislocations.Consequently,it is indicated that heterogeneous nucleation of the dislocation loop was predominant in the delayed plasticity initiation of this alloy and that the nucleation of the interstitial-type dislocation loop was involved due to Fe^(3+)-irradiation.展开更多
Background: Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these ...Background: Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these malignancies within the delicate brain parenchyma and their infiltrative growth pattern severely limit the use of aggressive local therapies. The particle therapy represents a new promising therapeutic approach to circumvent these prohibitive conditions with improved treatment efficacy. Methods and design: Patients with newly diagnosed malignant gliomas will have their tumor tissue samples submitted for the analysis of the status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. In Phase I, the patients will undergo an induction carbon ion radiotherapy (CIRT) boost followed by 60 GyE of proton irradiation with concurrent temozolomide (TMZ) at 75 mg/m2. To determine the maximal dose of safe induction boost, the tolerance, and acute toxicity rates in a dose-escalation manner from 9 to 18 GyE in three fractions will be used. In Phase III, GBM-only patients will be randomized to receive either 60 GyE (2 GyE per fraction) of proton irradia-tion with concurrent TMZ (control arm) or a CIRT boost (dose determined in Phase I of this trial) followed by 60 GyE of proton irradiation with concurrent TMZ. The primary endpoints are overall survival (OS) and toxicity rates (acute and long-term). Secondary endpoints are progression-free survival (PFS), and tumor response (based upon assess-ment with C-methionine/fluoro-ethyl-tyrosine positron emission tomography [MET/FET PET] or magnetic resonance imaging [MRI] and detection of serologic immune markers). We hypothesize that the induction CIRT boost will result in a greater initial tumor-killing ability and prime the tumor microenvironment for enhanced immunologic tumor clearance, resulting in an expected 33% improvement in OS rates. Discussion: The prognosis of GBM remains grim. The mechanism underpinning the poor prognosis of this malig-nancy is i展开更多
The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces exi...The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of micro- laminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size- dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plas- tic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engi- neers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qual- ities the interfaces in NMMs display at atomic scale.展开更多
Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, ...Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.展开更多
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
The principle of production of polymer mineral composite was analyzed. Property parameters and the procedure for producing PMC components were also given. Damping property and principle of vibration absorption of poly...The principle of production of polymer mineral composite was analyzed. Property parameters and the procedure for producing PMC components were also given. Damping property and principle of vibration absorption of polymer mineral composite were also investigated. Reduced experiment was conducted for two jigs which are similar in structure only different in material that one made of PMC the other made of casting iron to test their dynamic characteristic.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
文摘Incineration experiments with MSW, which had been impregnated with heavy metals, were presented to obtain information on the volatilization behavior of the elements cadmium(Cd), lead(Pb), and zinc(Zn) under different conditions. Experiments were carried out in a bubbling fluid bed system connected to a customized inductively coupled plasma optical emission spectroscopy(ICP-OES) for analyzing metals in the flue gas. The results indicated that the combustion temperature, the gas atmosphere, and the chlorine content in the flue gas could affect the volatilization behavior of heavy metals. In the fluidized bed combustion, a large surface area was provided by the bed sand particles, and they may act as absorbents for the gaseous ash-forming compound. Comparer with the metals Cd and Pb, the vaporization of Zn was low. The formation of stable compounds such as ZnO·Al 2O 3 could greatly decrease the metals volatilization. The presence of chlorine would enhance the volatilization of heavy metals by increasing the formation of metal chlorides. However, when the oxygen content was high, the chlorinating reaction was kinetically hindered, which heavy metals release would be delayed.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
文摘Atmospheric corrosion of 304 and 316 stainless steels was studied by field exposure test, in which rain water was collected and analyzed by atomic absorption spectroscope (AAS). Emphasis was put on the dissolution of chromium and nickel from the stainless steels by atmospheric corrosion and rain runoff. AAS analyses shows that the amounts of yearly chromium and nickel dissolution were less than 150ng/cm 2 and 50ng/cm 2 respectively for both 304 and 316 stainless steels. XPS analysis reveals the marked Cr enrichment on the 316 stainless steel after one year field exposure. SEM shows the morphology of corrosion pits on the steel surfaces.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金The project supported by the National Basic Research Program of China(2006CB601202)the National Natural Science Foundation of China(10328203,10572111,10572119,10632060)+2 种基金the National 111 Project of China(B06024),the Program for New Century Excellent Talents in University(NCET-04-0958)the 0pen Foundation of State Key Laboratory of Structural Analysis of Industrial EquipmentDoctorate Foundation of Northwestern Polytechnical University.
文摘An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores.
基金The project supported by the National Basic Research Program of China(2006CB601202)the National Natural Science Foundation of China(10328203,10572111,10632060)+1 种基金the National 111 Project of China(B06024)the US 0ffice of Naval Research(N000140210117).
文摘The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties. In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrA1Y foams was modeled by using a finite element (FE) model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well with experimental data.
基金supported by NSF of China(Grants No.50021101)Ministry of Science&Technology of China(G1999064505).
文摘The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.
基金supported by the National Natural Science Foundation of China(grant Nos.52122103 and 51971207)Shenzhen-Hong Kong Science and Technology Innovation Cooper-ation Zone Shenzhen Park Project:HZQB-KCZYB-2020030.
文摘Spherical nanoindentation of an iron-chromium-aluminum alloy was conducted to study the effect of ferric-ion(Fe 3+)irradiation on the time-dependent plasticity behavior in the surface layers of this alloy.It was observed that the initiation of plasticity by the appearance of displacement burst or“pop-in”event occurred after a period of waiting time in the apparent elastic regime and that Fe^(3+)irradiation at 360°C and up to∼0.5 displacements per atom could make it happen under the lower applied loads but with a reduced magnitude.Through the experimental data,an activation volume and activation energy were extracted for the delayed plasticity.The results show that Fe^(3+)-irradiation significantly reduced its acti-vation volume from∼3.05 b 3 to∼1.75 b 3(where b=Burgers vector),but slightly increased its activation energy from∼0.65 to∼0.71 eV.On the other hand,high-resolution scanning transmission electron mi-croscopy observations reveal that the irradiation at the elevated temperature created interstitial atom pair onto the(100)habit plane that can serve as the nucleation site of a100dislocation loop while elim-inating the pre-existing dislocations.Consequently,it is indicated that heterogeneous nucleation of the dislocation loop was predominant in the delayed plasticity initiation of this alloy and that the nucleation of the interstitial-type dislocation loop was involved due to Fe^(3+)-irradiation.
基金The National Key Research and Development Program of China(Project No.2017YFC0108603)Shanghai Hospital Development Center(Joint Breakthrough Project for New Frontier Technologies.Project No.SHDC12016120)+1 种基金Science and Technology Development Fund of Shanghai Pudong New Area(Project Nos.PKJ2017-Y49 and No.PKJ2018-Y51)The authors would like to thank Dr.Fei Liang(from the Fudan University Shanghai Cancer Center)for his support in statistical analysis and advice towards the design of this protocol.
文摘Background: Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these malignancies within the delicate brain parenchyma and their infiltrative growth pattern severely limit the use of aggressive local therapies. The particle therapy represents a new promising therapeutic approach to circumvent these prohibitive conditions with improved treatment efficacy. Methods and design: Patients with newly diagnosed malignant gliomas will have their tumor tissue samples submitted for the analysis of the status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. In Phase I, the patients will undergo an induction carbon ion radiotherapy (CIRT) boost followed by 60 GyE of proton irradiation with concurrent temozolomide (TMZ) at 75 mg/m2. To determine the maximal dose of safe induction boost, the tolerance, and acute toxicity rates in a dose-escalation manner from 9 to 18 GyE in three fractions will be used. In Phase III, GBM-only patients will be randomized to receive either 60 GyE (2 GyE per fraction) of proton irradia-tion with concurrent TMZ (control arm) or a CIRT boost (dose determined in Phase I of this trial) followed by 60 GyE of proton irradiation with concurrent TMZ. The primary endpoints are overall survival (OS) and toxicity rates (acute and long-term). Secondary endpoints are progression-free survival (PFS), and tumor response (based upon assess-ment with C-methionine/fluoro-ethyl-tyrosine positron emission tomography [MET/FET PET] or magnetic resonance imaging [MRI] and detection of serologic immune markers). We hypothesize that the induction CIRT boost will result in a greater initial tumor-killing ability and prime the tumor microenvironment for enhanced immunologic tumor clearance, resulting in an expected 33% improvement in OS rates. Discussion: The prognosis of GBM remains grim. The mechanism underpinning the poor prognosis of this malig-nancy is i
基金supported by the National Natural Science Foundation of China (Grants 51171141, 51271141, and 51471131)the Program for New Century Excellent Talents in University (Grant NCET-11-0431)
文摘The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of micro- laminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size- dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plas- tic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engi- neers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qual- ities the interfaces in NMMs display at atomic scale.
基金the Overseas Research Studentship (ORS)Overseas Trust Scholarship of Cambridge Universitythe National Natural Science Foundation of China (10572111,10632060)+1 种基金National 111 Project of China (B06024)the National Basic Research Program of China (2006CB601202)
文摘Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
文摘The principle of production of polymer mineral composite was analyzed. Property parameters and the procedure for producing PMC components were also given. Damping property and principle of vibration absorption of polymer mineral composite were also investigated. Reduced experiment was conducted for two jigs which are similar in structure only different in material that one made of PMC the other made of casting iron to test their dynamic characteristic.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.