Basalt discriminant diagrams have been used to identify the tectonic setting of basaltic magmatism since the 1970s and have played an important role in reconstructing paleotectonic environments.However,the significant...Basalt discriminant diagrams have been used to identify the tectonic setting of basaltic magmatism since the 1970s and have played an important role in reconstructing paleotectonic environments.However,the significant increase in the availability of geochemical data has led to a reassessment of these diagrams,suggesting that some of the tectonic settings indicated by these diagrams are not accurate.Here,we use a database of global ocean island basalt(OIB),mid-ocean ridge basalt(MORB),and island arc basalt(IAB)geochemistry to propose a series of new tectonic discriminant diagrams based on the ratios of large-ion lithophile elements(LILEs)to high field strength elements(HFSEs).These new diagrams indicate that the LILE can be used to differentiate OIB,MORB,and IAB samples,meaning that LILE/HFSE ratios can discriminate between these basalts that form in different tectonic settings.Our new diagrams can correctly assign samples to OIB,MORB,and IAB categories more than 85%of the time,with the discrimination between OIB and MORB having an accuracy of slightly less than 85%.展开更多
Electrochemical scanning tunneling microscopy and scanning electrochemical microscopy have been used for in situ monitoring of localized corrosion processes of different Duplex stainless steels (DSS) in acidic chlorid...Electrochemical scanning tunneling microscopy and scanning electrochemical microscopy have been used for in situ monitoring of localized corrosion processes of different Duplex stainless steels (DSS) in acidic chloride solutions. The techniques allow imaging of local dissolution events with micrometer resolution, as opposed to conventional electrochemical techniques, which only give an overall view of the corrosion behavior. In addition, combined scanning Kelvin probe force microscopy and magnetic force microscopy were used for mapping the Volta potential variation over the surface of DSSs. A significant difference in Volta potential between the austenite and ferrite phases suggests galvanic interaction between the phases. A compositional gradient appears within 2 micrometers across the phase boundary, as seen with scanning Auger microscopy (SAM). In all, the studies suggest that higher alloyed DSS exhibit a more homogeneous dissolution behavior than lower alloyed DSS, due to higher and more similar corrosion resistance of the two phases, and enhanced resistance of the ferrite/austenite phase boundary regions.展开更多
Novel PZT-5A ceramic-polymer composite was prepared via freezing technology.This composite exhibited good dielectric and ferroelectric behaviors.At 1 kHz,the dielectric constant and the dielectric loss were 546 and 0....Novel PZT-5A ceramic-polymer composite was prepared via freezing technology.This composite exhibited good dielectric and ferroelectric behaviors.At 1 kHz,the dielectric constant and the dielectric loss were 546 and 0.046,respectively,while the remnant polarization was 13.0μC=cm^(2)at room temperature.The electromechanical coupling coe±cient ekt T of PZT-5A composite was measured to be 0.54,which is similar to that of PZT piezoelectric ceramic.The piezoelectric coefficient(d_(33))of PZT-5A composite was determined to be~250 pC=N.Using this composite,a 58MHz single element transducer with the bandwidth of 70%at-6dB was built,and the insertion loss was tested to be-29dB around the central frequency.展开更多
Rejuvenation,bringing metallic glasses(MGs)to the younger and higher energy states,provides an alternative avenue to explore the interplay between the property and microstructures of MGs.In this study,the creep behavi...Rejuvenation,bringing metallic glasses(MGs)to the younger and higher energy states,provides an alternative avenue to explore the interplay between the property and microstructures of MGs.In this study,the creep behavior of the Zr_(69.5)Cu_(12)Ni_(11)Al_(7.5)MGs was experimentally examined by controlling the energy state in terms of structural rejuvenation and thermal annealing.It is found that compared to the as-cast counterpart,the annealed MG at a lower energy state exhibits a higher hardness,a smaller displacement,and a lower creep rate due to the decreased free volume and the inhibited activation of the shear transformation zone.Conversely,the rejuvenated MG at a high energy state displays lower hardness and increased free volume content,yet it demonstrates superior creep resistance compared to its as-cast counterpart,which deviates from conventional understanding.This unexpected phenomenon occurs as the initial high-content free volume annihilates during creep,and strain hardening takes precedence over strain softening as the prevailing process during creep deformation,leading to a superior creep performance in extremely rejuvenated MGs.展开更多
Refining grains into nanoscale can significantly strengthen and harden metallic materials;however,nanograined metals generally exhibit low thermal stability,hindering their practical applications.In this work,we explo...Refining grains into nanoscale can significantly strengthen and harden metallic materials;however,nanograined metals generally exhibit low thermal stability,hindering their practical applications.In this work,we exploit the superposition of the contribution of nanotwins,low-angle grain boundaries,and microalloying to tailor superior combinations of high hardness and good thermal stability in Ni and Ni alloys.For the nanotwinned Ni having a twin thickness of∼2.9 nm and grain size of 28 nm,it exhibits a hardness over 8.0 GPa and an onset coarsening temperature of 623 K,both of which are well above those of nanograined Ni.Re/Mo microalloying can further improve the onset coarsening temperature to 773 K without comprising hardness.Our analyses reveal that high hardness is achieved via strengthen-ing offered by extremely fine nanotwins.Meanwhile,the superior thermal stability is mainly ascribed to the low driving force for grain growth induced by the low-angle columnar boundary architecture and to the additional pinning effect on the migration of twin/columnar boundaries provided by minor Re/Mo solutes.The present work not only reveals a family of nanotwinned metals possessing the combination of ultra-high hardness and high thermal stability but also provides a strategy for tailoring properties of metallic materials by pairing low-angle grain boundaries and twin boundaries.展开更多
The slope stability assessment is a classical problem in geotechnical engineering.This topic have attracted many researcher’s attention and various theoretical models for predicting critical slope heights or safety f...The slope stability assessment is a classical problem in geotechnical engineering.This topic have attracted many researcher’s attention and various theoretical models for predicting critical slope heights or safety factors in the light of the limit equilibrium(LE)method and the kinematical approach of limit analysis(LA)method.Meanwhile,a large number of experimental studies have been conducted to check the slope stability.Using centrifuge testing results,this paper aims to employ Bayesian method to characterize the model uncertainties of the classical three-dimensional rotational failure mechanism proposed by Michalowski and Drescher(2009)to predict critical slope heights in frictional soils,by incorporating the test uncertainties and parameter uncertainties.The obtained results show that the LA three-dimensional rotational failure mechanism overestimates the critical slope height compared with the LE method,and the experimental observational uncertainty has negligible influences on the posterior statistics of model uncertainty.展开更多
The CeVO_4/graphitic C_3N_4 composites have exhibited much enhanced photocatalytic property for degrading methylene blue(MB) pollutant under visible light irradiation compared with single-phase g-C_3N_4 or CeVO_4. The...The CeVO_4/graphitic C_3N_4 composites have exhibited much enhanced photocatalytic property for degrading methylene blue(MB) pollutant under visible light irradiation compared with single-phase g-C_3N_4 or CeVO_4. The composite S5 obtained from an optimized mass ratio(5%) of CeVO_4 to dicyanamide(DCDA) exhibits the highest photocatalytic activity. Here, ternary Ag/CeVO_4/g-C_3N_4 composites denoted as X%Ag/S5 were prepared by an ultrasonic precipitation method to improve the photocatalytic property of S5. The TEM images show that CeVO_4 and Ag nanoparticles are well distributed on the layered g-C_3N_4, which agree well with the XRD results. The UV spectra show that the 7%Ag/S5 sample has the widest absorption range and the enhanced absorption intensity under visible light irradiation. The corresponding band gap of 7%Ag/S5(2.5 eV) is much lower than that of S5(2.65 eV). The corresponding k value of 7%Ag/S5 is much higher than those of g-C_3N_4 and CeVO_4. The degradation experiments for MB solution suggest that the 7%Ag/S5 sample has the optimal photocatalytic performance, which can degrade MB solution completely within 120 min. The enhanced photocatalytic property of the composites is ascribed to not only the effect of heterojunction structure, but also the surface plasma resonance effect of Ag nanoparticles.展开更多
A novel Z-scheme graphitic C_(3)N_(4)/reduced TiO_(2)microsphere(g-C_(3)N_(4)/r-TiO_(2))has been successfully synthesized by a solvothermal method.The as-prepared samples with different contents of g-C_(3)N_(4)were ch...A novel Z-scheme graphitic C_(3)N_(4)/reduced TiO_(2)microsphere(g-C_(3)N_(4)/r-TiO_(2))has been successfully synthesized by a solvothermal method.The as-prepared samples with different contents of g-C_(3)N_(4)were characterized by X-ray diffraction,electron paramagnetic resonance,scanning electron microscope,UV evis.diffuse reflectance and photoluminescence spectra.The r-TiO_(2)microspheres are aggregated on the surface of g-C_(3)N_(4)sheets in the as-prepared g-C_(3)N_(4)/r-TiO_(2)composites.All g-C_(3)N_(4)/r-TiO_(2)catalysts show enhanced photocatalytic activity for the degradation of rhodamine B under visible light irradiation.It could be attributed to these influences of oxygen vacancy(changing the band gap of TiO_(2)),the large specific surface area(providing much more active sites for photocatalytic reaction),and the synergetic effect between g-C_(3)N_(4)and r-TiO_(2)(promoting the separation for photoinduced electron-hole pairs).Moreover,the Z-scheme carriers transfer mechanism in the photocatalytic process has been discussed through trapping experiments of active species.The work demonstrates the strategies of the construction of Z-scheme carriers transfer system,the introduction of oxygen vacancy and structure designing are beneficial to design materials toward solar energy conversion like contaminant degradation.展开更多
A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4...A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this met hod in double glow surface alloying process. The tantalized samples were investi gated by SEM, XRD and electrochemical corrosion method .Results show the complic ated tissue of pure tantalizing layer and diffusion layer was successfully forme d on the surface of TC4 with the method of net-shape cathode glow discharge, whi ch further improved the corrosion-resistance of TC4 and formed good corrosion-re sistant alloys.展开更多
This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechan...This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given.展开更多
基金Technological Leading Talents Program of Yunnan Province[grant number 2013HA001]the National Natural Science Foundation of China[grant number 41502076]+1 种基金the State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences program[grant number 81300001]the China Geological Survey[grant number 12120114013701].
文摘Basalt discriminant diagrams have been used to identify the tectonic setting of basaltic magmatism since the 1970s and have played an important role in reconstructing paleotectonic environments.However,the significant increase in the availability of geochemical data has led to a reassessment of these diagrams,suggesting that some of the tectonic settings indicated by these diagrams are not accurate.Here,we use a database of global ocean island basalt(OIB),mid-ocean ridge basalt(MORB),and island arc basalt(IAB)geochemistry to propose a series of new tectonic discriminant diagrams based on the ratios of large-ion lithophile elements(LILEs)to high field strength elements(HFSEs).These new diagrams indicate that the LILE can be used to differentiate OIB,MORB,and IAB samples,meaning that LILE/HFSE ratios can discriminate between these basalts that form in different tectonic settings.Our new diagrams can correctly assign samples to OIB,MORB,and IAB categories more than 85%of the time,with the discrimination between OIB and MORB having an accuracy of slightly less than 85%.
文摘Electrochemical scanning tunneling microscopy and scanning electrochemical microscopy have been used for in situ monitoring of localized corrosion processes of different Duplex stainless steels (DSS) in acidic chloride solutions. The techniques allow imaging of local dissolution events with micrometer resolution, as opposed to conventional electrochemical techniques, which only give an overall view of the corrosion behavior. In addition, combined scanning Kelvin probe force microscopy and magnetic force microscopy were used for mapping the Volta potential variation over the surface of DSSs. A significant difference in Volta potential between the austenite and ferrite phases suggests galvanic interaction between the phases. A compositional gradient appears within 2 micrometers across the phase boundary, as seen with scanning Auger microscopy (SAM). In all, the studies suggest that higher alloyed DSS exhibit a more homogeneous dissolution behavior than lower alloyed DSS, due to higher and more similar corrosion resistance of the two phases, and enhanced resistance of the ferrite/austenite phase boundary regions.
基金This work has been partially supported by NIH grant#P41-EB2182.
文摘Novel PZT-5A ceramic-polymer composite was prepared via freezing technology.This composite exhibited good dielectric and ferroelectric behaviors.At 1 kHz,the dielectric constant and the dielectric loss were 546 and 0.046,respectively,while the remnant polarization was 13.0μC=cm^(2)at room temperature.The electromechanical coupling coe±cient ekt T of PZT-5A composite was measured to be 0.54,which is similar to that of PZT piezoelectric ceramic.The piezoelectric coefficient(d_(33))of PZT-5A composite was determined to be~250 pC=N.Using this composite,a 58MHz single element transducer with the bandwidth of 70%at-6dB was built,and the insertion loss was tested to be-29dB around the central frequency.
基金the National Natural Science Foundation of China(Nos.52022100,51871217,52001075,and 51971097)J.P.is also grateful for support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020194)Y.Lin thanks the China Postdoctoral Science Foundation(No.2021M701290).
文摘Rejuvenation,bringing metallic glasses(MGs)to the younger and higher energy states,provides an alternative avenue to explore the interplay between the property and microstructures of MGs.In this study,the creep behavior of the Zr_(69.5)Cu_(12)Ni_(11)Al_(7.5)MGs was experimentally examined by controlling the energy state in terms of structural rejuvenation and thermal annealing.It is found that compared to the as-cast counterpart,the annealed MG at a lower energy state exhibits a higher hardness,a smaller displacement,and a lower creep rate due to the decreased free volume and the inhibited activation of the shear transformation zone.Conversely,the rejuvenated MG at a high energy state displays lower hardness and increased free volume content,yet it demonstrates superior creep resistance compared to its as-cast counterpart,which deviates from conventional understanding.This unexpected phenomenon occurs as the initial high-content free volume annihilates during creep,and strain hardening takes precedence over strain softening as the prevailing process during creep deformation,leading to a superior creep performance in extremely rejuvenated MGs.
基金This work was supported by the National Natural Science Foundation of China(Nos.52022100,52001075,and 52101162)the Shenyang National Laboratory for Materials Science(No.E01SL102)+6 种基金J.Pan is also grateful for support from the Youth In-novation Promotion Association of the Chinese Academy of Sci-ences(No.2020194)Y.Li acknowledges financial support from the Shenyang National Laboratory for Materials Science.J.Lu gratefully acknowledges the support of the National Key R&D Program of China(No.2017YFA0204403)the Major Program of the National Natural Science Foundation of China(NSFC,No.51590892)the Hong Kong Collaborative Research Fund(CRF)Scheme(C4026-17W)Theme-Based Research Scheme(Ref.T13-402/17-N)Gen-eral Research Fund(GRF)Scheme(CityU 11247516,CityU 11209918,CityU 11216219)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(No.HZQB-KCZYB-2020030).Atom probe tomography research was conducted at the Inter-University 3D Atom Probe Tomography Unit of the City University of Hong Kong,which is supported by the CityU grant 9360161.
文摘Refining grains into nanoscale can significantly strengthen and harden metallic materials;however,nanograined metals generally exhibit low thermal stability,hindering their practical applications.In this work,we exploit the superposition of the contribution of nanotwins,low-angle grain boundaries,and microalloying to tailor superior combinations of high hardness and good thermal stability in Ni and Ni alloys.For the nanotwinned Ni having a twin thickness of∼2.9 nm and grain size of 28 nm,it exhibits a hardness over 8.0 GPa and an onset coarsening temperature of 623 K,both of which are well above those of nanograined Ni.Re/Mo microalloying can further improve the onset coarsening temperature to 773 K without comprising hardness.Our analyses reveal that high hardness is achieved via strengthen-ing offered by extremely fine nanotwins.Meanwhile,the superior thermal stability is mainly ascribed to the low driving force for grain growth induced by the low-angle columnar boundary architecture and to the additional pinning effect on the migration of twin/columnar boundaries provided by minor Re/Mo solutes.The present work not only reveals a family of nanotwinned metals possessing the combination of ultra-high hardness and high thermal stability but also provides a strategy for tailoring properties of metallic materials by pairing low-angle grain boundaries and twin boundaries.
基金supported by the National Natural Science Foundation of China(52108388)the science and technology innovation Program of Hunan Province(Project No.2021RC3015).
文摘The slope stability assessment is a classical problem in geotechnical engineering.This topic have attracted many researcher’s attention and various theoretical models for predicting critical slope heights or safety factors in the light of the limit equilibrium(LE)method and the kinematical approach of limit analysis(LA)method.Meanwhile,a large number of experimental studies have been conducted to check the slope stability.Using centrifuge testing results,this paper aims to employ Bayesian method to characterize the model uncertainties of the classical three-dimensional rotational failure mechanism proposed by Michalowski and Drescher(2009)to predict critical slope heights in frictional soils,by incorporating the test uncertainties and parameter uncertainties.The obtained results show that the LA three-dimensional rotational failure mechanism overestimates the critical slope height compared with the LE method,and the experimental observational uncertainty has negligible influences on the posterior statistics of model uncertainty.
基金supported by National Natural Science Foundation of China(No.51502116)the Six Talents Peak Project in Jiangsu Province(No.2011-ZBZZ045)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20140557)Special Funding of China Postdoctoral Science Foundation(No.2016T90425)China Postdoctoral Science Foundation(No.2015M571682)
文摘The CeVO_4/graphitic C_3N_4 composites have exhibited much enhanced photocatalytic property for degrading methylene blue(MB) pollutant under visible light irradiation compared with single-phase g-C_3N_4 or CeVO_4. The composite S5 obtained from an optimized mass ratio(5%) of CeVO_4 to dicyanamide(DCDA) exhibits the highest photocatalytic activity. Here, ternary Ag/CeVO_4/g-C_3N_4 composites denoted as X%Ag/S5 were prepared by an ultrasonic precipitation method to improve the photocatalytic property of S5. The TEM images show that CeVO_4 and Ag nanoparticles are well distributed on the layered g-C_3N_4, which agree well with the XRD results. The UV spectra show that the 7%Ag/S5 sample has the widest absorption range and the enhanced absorption intensity under visible light irradiation. The corresponding band gap of 7%Ag/S5(2.5 eV) is much lower than that of S5(2.65 eV). The corresponding k value of 7%Ag/S5 is much higher than those of g-C_3N_4 and CeVO_4. The degradation experiments for MB solution suggest that the 7%Ag/S5 sample has the optimal photocatalytic performance, which can degrade MB solution completely within 120 min. The enhanced photocatalytic property of the composites is ascribed to not only the effect of heterojunction structure, but also the surface plasma resonance effect of Ag nanoparticles.
基金This work is supported by Six Talents Peak Project in Jiangsu Province(2011-ZBZZ045)Jiangsu Province Ordinary University Graduate Student Innovation Project(201710299111H).
文摘A novel Z-scheme graphitic C_(3)N_(4)/reduced TiO_(2)microsphere(g-C_(3)N_(4)/r-TiO_(2))has been successfully synthesized by a solvothermal method.The as-prepared samples with different contents of g-C_(3)N_(4)were characterized by X-ray diffraction,electron paramagnetic resonance,scanning electron microscope,UV evis.diffuse reflectance and photoluminescence spectra.The r-TiO_(2)microspheres are aggregated on the surface of g-C_(3)N_(4)sheets in the as-prepared g-C_(3)N_(4)/r-TiO_(2)composites.All g-C_(3)N_(4)/r-TiO_(2)catalysts show enhanced photocatalytic activity for the degradation of rhodamine B under visible light irradiation.It could be attributed to these influences of oxygen vacancy(changing the band gap of TiO_(2)),the large specific surface area(providing much more active sites for photocatalytic reaction),and the synergetic effect between g-C_(3)N_(4)and r-TiO_(2)(promoting the separation for photoinduced electron-hole pairs).Moreover,the Z-scheme carriers transfer mechanism in the photocatalytic process has been discussed through trapping experiments of active species.The work demonstrates the strategies of the construction of Z-scheme carriers transfer system,the introduction of oxygen vacancy and structure designing are beneficial to design materials toward solar energy conversion like contaminant degradation.
文摘A new net-shape cathode sputtering target which has a simple structure and a hig h sputtering was put forward. The multiple-structure made of alloying and coatin g layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this met hod in double glow surface alloying process. The tantalized samples were investi gated by SEM, XRD and electrochemical corrosion method .Results show the complic ated tissue of pure tantalizing layer and diffusion layer was successfully forme d on the surface of TC4 with the method of net-shape cathode glow discharge, whi ch further improved the corrosion-resistance of TC4 and formed good corrosion-re sistant alloys.
基金The authors acknowledge the support of the National Key Basic Research Program of China(Nos.2010CB731504 and 2011CB013602)the research funding from the State Key Laboratory of Hydroscience and Engineering,Tsinghua University(No.2010-TC-1).
文摘This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given.