In the hyperbolic research community,there exists the strong belief that a continuous Galerkin scheme is notoriously unstable and additional stabilization terms have to be added to guarantee stability.In the first par...In the hyperbolic research community,there exists the strong belief that a continuous Galerkin scheme is notoriously unstable and additional stabilization terms have to be added to guarantee stability.In the first part of the series[6],the application of simultaneous approximation terms for linear problems is investigated where the boundary conditions are imposed weakly.By applying this technique,the authors demonstrate that a pure continu-ous Galerkin scheme is indeed linearly stable if the boundary conditions are imposed in the correct way.In this work,we extend this investigation to the nonlinear case and focus on entropy conservation.By switching to entropy variables,we provide an estimation of the boundary operators also for nonlinear problems,that guarantee conservation.In numerical simulations,we verify our theoretical analysis.展开更多
基金funded by the SNF Grant(Number 200021175784)the UZH Postdoc grant+1 种基金funded by an SNF Grant 200021_153604The Los Alamos unlimited release number is LA-UR-19-32411.
文摘In the hyperbolic research community,there exists the strong belief that a continuous Galerkin scheme is notoriously unstable and additional stabilization terms have to be added to guarantee stability.In the first part of the series[6],the application of simultaneous approximation terms for linear problems is investigated where the boundary conditions are imposed weakly.By applying this technique,the authors demonstrate that a pure continu-ous Galerkin scheme is indeed linearly stable if the boundary conditions are imposed in the correct way.In this work,we extend this investigation to the nonlinear case and focus on entropy conservation.By switching to entropy variables,we provide an estimation of the boundary operators also for nonlinear problems,that guarantee conservation.In numerical simulations,we verify our theoretical analysis.