The incorporation of therapeutic-capable ions into bioactive glasses(BGs),either based on silica(SBGs)or phosphate(PBGs),is currently envisaged as a proficient path for facilitating bone regeneration.Inconjunction wit...The incorporation of therapeutic-capable ions into bioactive glasses(BGs),either based on silica(SBGs)or phosphate(PBGs),is currently envisaged as a proficient path for facilitating bone regeneration.Inconjunction with this view,the single and complementary structural and bio-functional roles of CuO andGa_(2)O_(3)(in the 2e5 mol%range)were assessed,by deriving a series of SBG and PBG formulations startingfrom the parent glass systems,FastOs®BG e 38.5SiO2d36.1CaOd5.6P2O5d19.2MgOd0.6CaF2,and50.0P2O5d35.0CaOd10.0Na_(2)Od5.0 Fe2O_(3)(mol%),respectively,using the process of melt-quenching.The inter-linked physico-chemistry e biological response of BGs was assessed in search of bio-functional triggers.Further light was shed on the structural role e as network former or modifier e ofCu and Ga,immersed in SBG and PBG matrices.The preliminary biological performance was surveyedin vitro by quantification of Cu and Ga ion release under homeostatic conditions,cytocompatibility assays(in fibroblast cell cultures)and antibacterial tests(against Staphylococcus aureus).The similar(Cu)anddissimilar(Ga)structural roles in the SBG and PBG vitreous networks governed their release.Namely,Cuions were leached in similar concentrations(ranging from 10e35 ppm and 50e110 ppm at BG doses of 5and 50 mg/mL,respectively)for both type of BGs,while the release of Ga ions was 1e2 orders ofmagnitude lower in the case of SBGs(i.e.,0.2e6 ppm)compared to PBGs(i.e.,9e135 ppm).This wasattributed to the network modifier role of Cu in both types of BGs,and conversely,to the network former(SBGs)and network modifier(PBGs)roles of Ga.All glasses were cytocompatible at a dose of 5 mg/mL,while at the same concentration the antimicrobial efficiency was found to be accentuated by the coupledrelease of Cu and Ga ions from SBG.By collective assessment,the most prominent candidate material forthe further development of implant coatings and bone graft substitutes was delineated as the38.5SiO2d34.1CaOd5.6P2O5d16.2MgOd0.6CaF2d2.0CuOd3.0Ga_(2)O_(3)(mol%)SBG system,w展开更多
Rod-like single-phase seed crystals of yttrium-α-SiAlONs were synthesized by combustion synthesis method. The XRD patterns, the morphologies of products and formation mechanism were investigated. The SEM observation ...Rod-like single-phase seed crystals of yttrium-α-SiAlONs were synthesized by combustion synthesis method. The XRD patterns, the morphologies of products and formation mechanism were investigated. The SEM observation of crystals exhibits well developed elongated hexagonal crystals with highly agglomerative features, assigned to pure and well-crystallized α-SiAlON. After special chemical treatments and water washing, the powders are well dispersed and still keep elongated hexagonal crystals, and the XRD pattern shows that the rod-like structure is crystalline yttrium-α-SiAlON with only a trace of β-SiAlON.展开更多
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactiveinorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been thede...Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactiveinorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been thedeliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization,confer antioxidant properties, and impart antimicrobial effects, marking significant contributions tothe field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertaintiesposed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroidhormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. Thiscomprehensive overview of CICECO-hub’s significant contributions to the forefront inorganic biomaterials acrossall research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures),follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, andtesting protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes(scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated boneregeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctionalexamples of successful biomedical applications and effective translations to the market of bone grafts foradvanced therapies.展开更多
文摘The incorporation of therapeutic-capable ions into bioactive glasses(BGs),either based on silica(SBGs)or phosphate(PBGs),is currently envisaged as a proficient path for facilitating bone regeneration.Inconjunction with this view,the single and complementary structural and bio-functional roles of CuO andGa_(2)O_(3)(in the 2e5 mol%range)were assessed,by deriving a series of SBG and PBG formulations startingfrom the parent glass systems,FastOs®BG e 38.5SiO2d36.1CaOd5.6P2O5d19.2MgOd0.6CaF2,and50.0P2O5d35.0CaOd10.0Na_(2)Od5.0 Fe2O_(3)(mol%),respectively,using the process of melt-quenching.The inter-linked physico-chemistry e biological response of BGs was assessed in search of bio-functional triggers.Further light was shed on the structural role e as network former or modifier e ofCu and Ga,immersed in SBG and PBG matrices.The preliminary biological performance was surveyedin vitro by quantification of Cu and Ga ion release under homeostatic conditions,cytocompatibility assays(in fibroblast cell cultures)and antibacterial tests(against Staphylococcus aureus).The similar(Cu)anddissimilar(Ga)structural roles in the SBG and PBG vitreous networks governed their release.Namely,Cuions were leached in similar concentrations(ranging from 10e35 ppm and 50e110 ppm at BG doses of 5and 50 mg/mL,respectively)for both type of BGs,while the release of Ga ions was 1e2 orders ofmagnitude lower in the case of SBGs(i.e.,0.2e6 ppm)compared to PBGs(i.e.,9e135 ppm).This wasattributed to the network modifier role of Cu in both types of BGs,and conversely,to the network former(SBGs)and network modifier(PBGs)roles of Ga.All glasses were cytocompatible at a dose of 5 mg/mL,while at the same concentration the antimicrobial efficiency was found to be accentuated by the coupledrelease of Cu and Ga ions from SBG.By collective assessment,the most prominent candidate material forthe further development of implant coatings and bone graft substitutes was delineated as the38.5SiO2d34.1CaOd5.6P2O5d16.2MgOd0.6CaF2d2.0CuOd3.0Ga_(2)O_(3)(mol%)SBG system,w
文摘Rod-like single-phase seed crystals of yttrium-α-SiAlONs were synthesized by combustion synthesis method. The XRD patterns, the morphologies of products and formation mechanism were investigated. The SEM observation of crystals exhibits well developed elongated hexagonal crystals with highly agglomerative features, assigned to pure and well-crystallized α-SiAlON. After special chemical treatments and water washing, the powders are well dispersed and still keep elongated hexagonal crystals, and the XRD pattern shows that the rod-like structure is crystalline yttrium-α-SiAlON with only a trace of β-SiAlON.
基金the project No.2021/43/P/ST7/02418 cofunded by the National Science Centre and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945339JMFF,RB,PG gratefully acknowledge the financial support provided by the Polish National Science Centre for the POLONEZ BIS 1“BAGBONE”,Project no.536651. JMFF would like to thank all the national and international research collaborators for their valuable contributions,especially for the papers covered in this review article+2 种基金the scope of the project CICECOAveiro Institute of Materials,UIDB/50011/2020,UIDP/50011/2020&LA/P/0006/2020,financed by national funds through the FCT/MCTES(PIDDAC)the Department of Health Research–Indian Council of Medical Research[DHR-ICMR]India[Reference:R. 11013/28/2021-GIA/HR dated November 25,2021]is recognized by SK and MA. GES and ACP are thankful to the Core Program of the National Institute of Materials Physics within the National Research Development and Innovation Plan 2022–2027,carried out with the support of the Romanian Ministry of Research,Innovation and Digitalization under the project PC2-PN23080101.
文摘Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactiveinorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been thedeliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization,confer antioxidant properties, and impart antimicrobial effects, marking significant contributions tothe field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertaintiesposed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroidhormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. Thiscomprehensive overview of CICECO-hub’s significant contributions to the forefront inorganic biomaterials acrossall research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures),follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, andtesting protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes(scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated boneregeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctionalexamples of successful biomedical applications and effective translations to the market of bone grafts foradvanced therapies.