In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize ph...In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the samples, and the XRD result indicated that the addition of alumina pro- moted crystallization of fused silica during sintering at 1180-1220 ℃ and thus increases the amount of cristobalite. The increased amount of cristobalite as well as alumina addition led to much more thermal dilation due to their higher coefficients of thermal expansion than that of fused silica. The flexural strengths at room temperature and 1500 ~C were tested, and it was shown that alumina addition could not affect room temperature strength, but decreased the flexural strength at 1500 ℃. In addition, deflection resis- tance during heating to high temperatures was investigated, and the result indicated that alumina addition speeded up high temperature softening of the samples. XRD and scanning electron microscopy equipped with energy dispersive spectrometry (SEMJEDS) analysis suggested that this softening behavior was related with viscous flow sintering which could be accelerated by the reaction of alumina and silica with a product of mullite.展开更多
Nowadays,thermal condition and solute field are considered as the potential dominant factors controlling competitive grain growth during directional solidification process.However,the controlling modes and critical co...Nowadays,thermal condition and solute field are considered as the potential dominant factors controlling competitive grain growth during directional solidification process.However,the controlling modes and critical conditions of competitive grain growth have been drastically debated over the past two decades.In this work,thermal condition and solute field are combined to study the competitive grain growth in the converging case by experimental observation and numerical simulation of bicrystal samples.We find the competitive grain growth is controlled by the cooperative effect of thermal condition and solute field,and the controlling modes are related to the bicrystal misorientation between favorably and unfavorably oriented grains.When the unfavorably oriented grain is low misoriented,unfavorably oriented grain dominates grain selection,and the competitive grain growth performs as solute field domination.However,with the increase of unfavorably oriented grain’s misorientation,the grain selection converts into favorably oriented grain domination,and the competitive grain growth changes to thermal condition domination.To explain these abnormal transformation phenomena,we propose a misorientation dependent thermal condition-solute field cooperative domination model and identify the critical conditions by a critical misorientation(θ_(cm)).According to dynamic equation of dendrite growth,we calculate the critical misorientationθ;to prove this model.The theoretical calculation results agree well with the experimental results.展开更多
Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as th...Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.展开更多
The oxidation behaviour of a fourth-generation single-crystal superalloy without coating and with two types of MCrAlY coatings at 1140℃was studied.The results showed that both coatings greatly improved the oxidation ...The oxidation behaviour of a fourth-generation single-crystal superalloy without coating and with two types of MCrAlY coatings at 1140℃was studied.The results showed that both coatings greatly improved the oxidation resistance of the superalloy,and the addition of Hf further improved the oxidation resistance by pinning the oxide layer into the coating.Before and after oxidation,obvious Cr and Al interdiffusion was detected.Inward Cr diffusion induces the precipitation of a topologically close-packed phase,while the diffusion of Al affects the structure of theγ/γ’phase,the solubility of refractory elements,and the formation of an interdiffusion zone.展开更多
Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex st...Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex structures and high precision[1–3].However,traditional preparation method based on investment casting is tedious,requiring not only long production cycles but also high cost[4].展开更多
文摘In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the samples, and the XRD result indicated that the addition of alumina pro- moted crystallization of fused silica during sintering at 1180-1220 ℃ and thus increases the amount of cristobalite. The increased amount of cristobalite as well as alumina addition led to much more thermal dilation due to their higher coefficients of thermal expansion than that of fused silica. The flexural strengths at room temperature and 1500 ~C were tested, and it was shown that alumina addition could not affect room temperature strength, but decreased the flexural strength at 1500 ℃. In addition, deflection resis- tance during heating to high temperatures was investigated, and the result indicated that alumina addition speeded up high temperature softening of the samples. XRD and scanning electron microscopy equipped with energy dispersive spectrometry (SEMJEDS) analysis suggested that this softening behavior was related with viscous flow sintering which could be accelerated by the reaction of alumina and silica with a product of mullite.
基金financially supported by the Shandong Provincial Natural Science Foundation(No.ZR2020ME110)the National Natural Science Foundation of China(Nos.51331005,U1508213,51771190 and 51601102)+2 种基金the Fund of the State Key Laboratory of Solidification Processing in NWPU(Nos.SKLSP201847 and SKLSP201834)the Young Doctors Cooperation Project in Qilu University of Technology(No.2018BSHZ003)the Key Research and Development Program of Ningxia(No.2019BDE03016)。
文摘Nowadays,thermal condition and solute field are considered as the potential dominant factors controlling competitive grain growth during directional solidification process.However,the controlling modes and critical conditions of competitive grain growth have been drastically debated over the past two decades.In this work,thermal condition and solute field are combined to study the competitive grain growth in the converging case by experimental observation and numerical simulation of bicrystal samples.We find the competitive grain growth is controlled by the cooperative effect of thermal condition and solute field,and the controlling modes are related to the bicrystal misorientation between favorably and unfavorably oriented grains.When the unfavorably oriented grain is low misoriented,unfavorably oriented grain dominates grain selection,and the competitive grain growth performs as solute field domination.However,with the increase of unfavorably oriented grain’s misorientation,the grain selection converts into favorably oriented grain domination,and the competitive grain growth changes to thermal condition domination.To explain these abnormal transformation phenomena,we propose a misorientation dependent thermal condition-solute field cooperative domination model and identify the critical conditions by a critical misorientation(θ_(cm)).According to dynamic equation of dendrite growth,we calculate the critical misorientationθ;to prove this model.The theoretical calculation results agree well with the experimental results.
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0002-0072)the National Key R&D Program of China(Nos.2017YFA0700704,2018YFB110660 and 2017YFB1103800)+2 种基金the National Natural Science Foundation of China(Nos.51601192,51671188,51701210 and 51771190)the Youth Innovation Promotion Association,the Chinese Academy of SciencesState Key Lab of Advanced Metals and Materials Open Fund(No.2018-Z07)。
文摘Both surface and internal microstructures of a second-generation Ni-based single crystal(SX) superalloy were studied after creep and rejuvenation heat treatment(RHT).It is indicated that the microstructures,such as the dislocation network,the γ phase and the γ' phase,can be recovered to those after the standard heat treatment(SHT).It is found that RHT affected zone(RAZ) formed at the surface is composed of theγ'-free layer,the transition layer and the recrystallization(RX),which are less than 20 μm in depth totally.Such depth of the RAZ doesn't affect the properties of the superalloy.The morphology of γ' phase at the RAZ is related to the composition of the elements.The average creep life after RHT is close to the average life after SHT.It is concluded that RHT could effectively repair SX parts and increase the total life of the sample after a damage by creep.
基金supported by the National Science and Technology Major Project under Grant No.2017-VI-0002-0072the National Key Research and Development Program of China under Grant No.2017YFA0700704+2 种基金the National Natural Science Foundation of China(NSFC)under Grant Nos.51671188 and 51771190the Youth Innovation Promotion Association,Chinese Academy of Sciences and Innovation Academy for Light-duty Gas TurbineChinese Academy of Sciences under Grant No.CXYJJ20-MS-03。
文摘The oxidation behaviour of a fourth-generation single-crystal superalloy without coating and with two types of MCrAlY coatings at 1140℃was studied.The results showed that both coatings greatly improved the oxidation resistance of the superalloy,and the addition of Hf further improved the oxidation resistance by pinning the oxide layer into the coating.Before and after oxidation,obvious Cr and Al interdiffusion was detected.Inward Cr diffusion induces the precipitation of a topologically close-packed phase,while the diffusion of Al affects the structure of theγ/γ’phase,the solubility of refractory elements,and the formation of an interdiffusion zone.
基金the National Science and Technology Major Project,China(Nos.2017-VI-0002-0072,Y2019-VII0011-0151)the National Key Research and Development Program,China(No.2018YFB1106600)。
文摘Ceramic cores with good chemical stability and moderate mechanical properties near casting temperatures of 1550℃ for example are used for the manufacturing of internal structures of hollow blades,requiring complex structures and high precision[1–3].However,traditional preparation method based on investment casting is tedious,requiring not only long production cycles but also high cost[4].