Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B±section, but because of their importance we have created two new sections:
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the ...The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http ://pdg. lbl. gov.展开更多
Revised September 2013 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in high-energy physics. In statistics, we are interested in using a given sample of data to make inferences about...Revised September 2013 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in high-energy physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model's validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian.展开更多
J=1/2e MASS (atomic mass units u)The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conve...J=1/2e MASS (atomic mass units u)The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the electron in u; indeed, the recent improvements in the mass determination are not evident when the result is given in MeV. In this datablock we give the result in u, and in the following datablock in MeV.展开更多
1. Overview The Review of Particle Physics and the abbreviated version, the Particle Physics Booklet, are reviews of the field of Particle Physics. This complete Review includes a compilation/evaluation of data on par...1. Overview The Review of Particle Physics and the abbreviated version, the Particle Physics Booklet, are reviews of the field of Particle Physics. This complete Review includes a compilation/evaluation of data on particle properties, called the "Particle Listings." These Listings include 3,283 new measurements from 899 papers, in addition to the 32,153 measurements from 8,944 papers that first appeared in previous editions [1].展开更多
33.1. Introduction This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such appl...33.1. Introduction This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such applications will be provided. The detector techniques which are specific to non-accelerator particle physics experiments are the subject of Chap.展开更多
Revised October 2013 by J.J. Beatty (Ohio State Univ.), J. Matthews (Louisiana State Univ.), and S.P. Wakely (Univ. of Chicago); revised August 2009 by T.K. Gaisser and T. Stanev (Bartol Research Inst., Univ. o...Revised October 2013 by J.J. Beatty (Ohio State Univ.), J. Matthews (Louisiana State Univ.), and S.P. Wakely (Univ. of Chicago); revised August 2009 by T.K. Gaisser and T. Stanev (Bartol Research Inst., Univ. of Delaware).展开更多
Revised August 2013 by M.J. Syphers (MSU) and F. Zimmermann (CERN).29.1. Luminosity This article provides background for the High-Energy Collider Parameter Tables that follow. The number of events, Nexp, is the pr...Revised August 2013 by M.J. Syphers (MSU) and F. Zimmermann (CERN).29.1. Luminosity This article provides background for the High-Energy Collider Parameter Tables that follow. The number of events, Nexp, is the product of the cross section of interest,展开更多
CHARMED BARYONS Revised March 2012 by C.G. Wohl (LBNL). There are 17 known charmed baryons, and four other candidates not well enough established to be promoted to the Summary Tables.* Fig. l(a) shows the mass sp...CHARMED BARYONS Revised March 2012 by C.G. Wohl (LBNL). There are 17 known charmed baryons, and four other candidates not well enough established to be promoted to the Summary Tables.* Fig. l(a) shows the mass spectrum,展开更多
1. IntroductionThe collection of online information resources in particle physics and related areas presented in this chapter is of necessity incomplete. An expanded and regularly updated online version can be found at:
Particle Data GroupK.A. Olive, K. Agashe, C. Amsler, M. Antonelli, J.-F. Arguin, D.M. Asner, H. Baer, H.R. Band, R.M. Barnett, T. Basaglia, C.W. Bauer, J.J. Beatty, V.I. Belousov, J. Beringer, G. Bernardi, S. Bethke, ...Particle Data GroupK.A. Olive, K. Agashe, C. Amsler, M. Antonelli, J.-F. Arguin, D.M. Asner, H. Baer, H.R. Band, R.M. Barnett, T. Basaglia, C.W. Bauer, J.J. Beatty, V.I. Belousov, J. Beringer, G. Bernardi, S. Bethke, H. Bichsel, O. Biebel,展开更多
文摘Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B±section, but because of their importance we have created two new sections:
基金supported by the Director,Office of Science,Office of High Energy Physics of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231the U.S.National Science Foundation under Agreement No.PHY-0652989+3 种基金the European Laboratory for Particle Physics(CERN)an implementing arrangement between the governments of Japan(MEXT:Ministry of Education,Culture,Sports,Science and Technology)and the United States(DOE)on cooperative research and developmentthe Italian National Institute of Nuclear Physics(INFN)B.C.F.was supported by the U.S.National Science Foundation Grant PHY-1214082
文摘The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http ://pdg. lbl. gov.
文摘Revised September 2013 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in high-energy physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model's validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian.
文摘J=1/2e MASS (atomic mass units u)The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the electron in u; indeed, the recent improvements in the mass determination are not evident when the result is given in MeV. In this datablock we give the result in u, and in the following datablock in MeV.
基金supported by the Director,Office of Science,Office of High Energy Physics of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231by the U.S.National Science Foundation under Agreement No.PHY-0652989+2 种基金by the European Laboratory for Particle Physics(CERN)by an implementing arrangement between the governments of Japan(MEXT:Ministry of Education,Culture,Sports, Science and Technology) and the United States(DOE) on cooperative research and developmentby the Italian National Institute of Nuclear Physics(INFN)
文摘1. Overview The Review of Particle Physics and the abbreviated version, the Particle Physics Booklet, are reviews of the field of Particle Physics. This complete Review includes a compilation/evaluation of data on particle properties, called the "Particle Listings." These Listings include 3,283 new measurements from 899 papers, in addition to the 32,153 measurements from 8,944 papers that first appeared in previous editions [1].
文摘33.1. Introduction This review summarizes the detector technologies employed at accelerator particle physics experiments. Several of these detectors are also used in a non-accelerator context and examples of such applications will be provided. The detector techniques which are specific to non-accelerator particle physics experiments are the subject of Chap.
文摘Revised October 2013 by J.J. Beatty (Ohio State Univ.), J. Matthews (Louisiana State Univ.), and S.P. Wakely (Univ. of Chicago); revised August 2009 by T.K. Gaisser and T. Stanev (Bartol Research Inst., Univ. of Delaware).
基金supported by PAPIIT(DGAPA-UNAM) project IN106913 and CONACyT(Mexico) project 151234support by the Mainz Institute for Theoretical Physics(MITP) where part of this work was completed.A.F.is supported in part by the National Science Foundation under grant no. PHY-1212635
文摘Revised November 2013 by J. Erler (U. Mexico) and A. Freit&s (Pittsburgh U.).10.1 Introduction 10.2 Renormalization and radiative corrections
文摘Revised August 2013 by M.J. Syphers (MSU) and F. Zimmermann (CERN).29.1. Luminosity This article provides background for the High-Energy Collider Parameter Tables that follow. The number of events, Nexp, is the product of the cross section of interest,
文摘CHARMED BARYONS Revised March 2012 by C.G. Wohl (LBNL). There are 17 known charmed baryons, and four other candidates not well enough established to be promoted to the Summary Tables.* Fig. l(a) shows the mass spectrum,
文摘1. IntroductionThe collection of online information resources in particle physics and related areas presented in this chapter is of necessity incomplete. An expanded and regularly updated online version can be found at:
文摘Particle Data GroupK.A. Olive, K. Agashe, C. Amsler, M. Antonelli, J.-F. Arguin, D.M. Asner, H. Baer, H.R. Band, R.M. Barnett, T. Basaglia, C.W. Bauer, J.J. Beatty, V.I. Belousov, J. Beringer, G. Bernardi, S. Bethke, H. Bichsel, O. Biebel,