This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coor...This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coordinate the benefits of all parties participated in the integrated energy system(IES). In order to solve the many-objective optimization model efficiently, an improved objective reduction(IOR) approach is proposed, aiming at acquiring the smallest set of objectives. The IOR approach utilizes the Spearman’s rank correlation coefficient to measure the relationship between objectives based on the Pareto-optimal front captured by the multi-objective group search optimizer with adaptive covariance and Lévy flights algorithm, and adopts various strategies to reduce the number of objectives gradually. Simulation studies are conducted on an IES consisting of a modified IEEE 30-bus electricity network and a 15-node gas network. The results show that the many-objective optimization problem is transformed into a bi-objective formulation by the IOR. Furthermore,our approach improves the overall quality of dispatch solutions and alleviates the decision making burden.展开更多
Uncertainty in distributed renewable generation threatens the security of power distribution systems.The concept of dispatchable region is developed to assess the ability of power systems to accommodate renewable gene...Uncertainty in distributed renewable generation threatens the security of power distribution systems.The concept of dispatchable region is developed to assess the ability of power systems to accommodate renewable generation at a given operating point.Although DC and linearized AC power flow equations are typically used to model dispatchable regions for transmission systems,these equations are rarely suitable for distribution networks.To achieve a suitable trade-off between accuracy and efficiency,this paper proposes a dispatchable region formulation for distribution networks using tight convex relaxation.Secondorder cone relaxation is adopted to reformulate AC power flow equations,which are then approximated by a polyhedron to improve tractability.Further,an efficient adaptive constraint generation algorithm is employed to construct the proposed dispatchable region.Case studies on distribution systems of various scales validate the computational efficiency and accuracy of the proposed method.展开更多
Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvex...Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.展开更多
Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different...Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.展开更多
The accuracy of the simulation model has a pro-found impact on the optimal operation of the energy hubs(EHs).However,in many articles,the constant model of the efficiency of equipment is adopted to formulate the opera...The accuracy of the simulation model has a pro-found impact on the optimal operation of the energy hubs(EHs).However,in many articles,the constant model of the efficiency of equipment is adopted to formulate the operation system,which would probably lead to a simplification of the simulation models.But,EHs are typically operated under off-design condition due to the fluctuations in cooling,heating,electricity requirement.More-over,even though the off-design characteristics are considered,few studies have suggested comparing the differences between those two models by considering the operation cost.In order to assess the effect of the off-design characteristics of EH on the optimal operation accuracy in this paper,two test cases are performed on the fixed and variable load conditions,respectively.In addition,the individual effect of off-design characteristics of each equipment on the optimal operation cost of the EH is also investigated through four optimization runs.It is worth mentioning that the optimal operation problem of the EH considering the off-design characteristics and on-off status of the equipment is a mixed integer non-linear programming problem(MINLP).By testing the design and off-design models on the two cases,the results of simulation demonstrate that the optimal operation cost for the off-design model is larger than that for the design model.Nonetheless,in the aspect of the authenticity of the system operation strategy,the off-design model performs better than the design model.Furthermore,a larger relative error of the system operation cost between the two models can be observed when the EH is operated under a relatively lower load condition,revealing that the influence of off-design characteristic on the optimal operation of EHs is too significant to be neglected.展开更多
Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the mea...Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.展开更多
基金supported by the State Key Program of National Natural Science Foundation of China(No.51437006)Guangdong Innovative Research Team Program(No.201001N0104744201)
文摘This paper develops a many-objective optimization model, which contains objectives representing the interests of the electricity and gas networks, as well as the distributed district heating and cooling units, to coordinate the benefits of all parties participated in the integrated energy system(IES). In order to solve the many-objective optimization model efficiently, an improved objective reduction(IOR) approach is proposed, aiming at acquiring the smallest set of objectives. The IOR approach utilizes the Spearman’s rank correlation coefficient to measure the relationship between objectives based on the Pareto-optimal front captured by the multi-objective group search optimizer with adaptive covariance and Lévy flights algorithm, and adopts various strategies to reduce the number of objectives gradually. Simulation studies are conducted on an IES consisting of a modified IEEE 30-bus electricity network and a 15-node gas network. The results show that the many-objective optimization problem is transformed into a bi-objective formulation by the IOR. Furthermore,our approach improves the overall quality of dispatch solutions and alleviates the decision making burden.
基金the National Natural Science Foundation of China(Grant No.52177086)the Fundamental Research Funds for the Central Universities(Grant No.2023ZYGXZR063)。
文摘Uncertainty in distributed renewable generation threatens the security of power distribution systems.The concept of dispatchable region is developed to assess the ability of power systems to accommodate renewable generation at a given operating point.Although DC and linearized AC power flow equations are typically used to model dispatchable regions for transmission systems,these equations are rarely suitable for distribution networks.To achieve a suitable trade-off between accuracy and efficiency,this paper proposes a dispatchable region formulation for distribution networks using tight convex relaxation.Secondorder cone relaxation is adopted to reformulate AC power flow equations,which are then approximated by a polyhedron to improve tractability.Further,an efficient adaptive constraint generation algorithm is employed to construct the proposed dispatchable region.Case studies on distribution systems of various scales validate the computational efficiency and accuracy of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant 52177086the Fundamental Research Funds for the Central Universities under Grant 2023ZYGXZR063the Science and Technology Program of Guizhou Power Grid Coorperation under Grant GZKJXM20222386.
文摘Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004the National Natural Science Foundation of China under Grant 52177086+2 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011408the Science and Technology Program of Guangzhou under Grant 201904010215the Talent Recruitment Project of Guangdong under Grant 2017GC010467.
文摘Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.
基金The work was supported by the State Key Program of National Natural Science Foundation of China(Grant No.51437006)the Natural Science Foundation of Guangdong Province,China(2018A030313799).
文摘The accuracy of the simulation model has a pro-found impact on the optimal operation of the energy hubs(EHs).However,in many articles,the constant model of the efficiency of equipment is adopted to formulate the operation system,which would probably lead to a simplification of the simulation models.But,EHs are typically operated under off-design condition due to the fluctuations in cooling,heating,electricity requirement.More-over,even though the off-design characteristics are considered,few studies have suggested comparing the differences between those two models by considering the operation cost.In order to assess the effect of the off-design characteristics of EH on the optimal operation accuracy in this paper,two test cases are performed on the fixed and variable load conditions,respectively.In addition,the individual effect of off-design characteristics of each equipment on the optimal operation cost of the EH is also investigated through four optimization runs.It is worth mentioning that the optimal operation problem of the EH considering the off-design characteristics and on-off status of the equipment is a mixed integer non-linear programming problem(MINLP).By testing the design and off-design models on the two cases,the results of simulation demonstrate that the optimal operation cost for the off-design model is larger than that for the design model.Nonetheless,in the aspect of the authenticity of the system operation strategy,the off-design model performs better than the design model.Furthermore,a larger relative error of the system operation cost between the two models can be observed when the EH is operated under a relatively lower load condition,revealing that the influence of off-design characteristic on the optimal operation of EHs is too significant to be neglected.
基金supported by National Natural Science Foundation of China(52177086)Fundamental Research Funds for the Central Universities(2023ZYGXZR063).
文摘Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.